Myriad 2:
“Eye of the Computational Vision Storm”

David Moloney, Co-founder & CTO
Co-Authors: Brendan Barry, Richard Richmond, Fergal Connor, Cormac Brick, David Donohoe, et al.
Hot Chips 26 August 12, 2014
Movidius Update Since Hot Chips 2011

- Mobile Vision Processor company opening the era of computational cameras:

 - 8+ years of heritage. Close to $60M invested into technology development
 - Proven architecture. 100% internally developed. Strong IP position
 - February 2014 announcement: Google partnership with Myriad 1
 - July 30, 2014 announcement: Myriad 2 Vision Processor SOC
 - Headquartered in San Mateo, CA with design centers in Dublin, Ireland and Timisoara, Romania. Currently employing 70 staff including 65 engineers (10% hardware, 90% software/system)
Disruptive Imaging Evolution
From Digital Imaging to Computational Imaging

- Computational Optics
- Smaller f# (better night picture)
- Thinner Camera
- Multi aperture Camera
- Computational Photography
- Smaller Pixel -> host processing
- New Sensor Technologies
- Increasing Resolution/MP

Vision Processing
- Higher Image Quality
- New Imaging Experience
- Visual Awareness
- Computational Photography

The on-going transition of the imaging value chain

Why Digital → Computational Imaging?
the only way to overcome physical, mechanical and computational limitations of today’s mobile cameras
Why are Computational Cameras a Game Changer?
Highway to the next generation user experiences

Image Capture

The old paradigm

Computational Photography

“Optical” zoom, Depth, HDR, Ultra-fast AutoFocus, Panorama, 360° capture, Extreme low light

Vision Processing: the new imaging paradigm

Visual Awareness

3D Modeling, 3D Scanning, Visual Search, Indoor navigation, Augmented reality, Object detection, Object recognition…
Need for Special Purpose Vision Processor

Given Thermal Limitations and Limited Battery Life

Source: Movidius
Introducing the Myriad 2 Vision Processor SOC

Optimized configurable imaging and vision hardware engines (framework)

Vector VLIW processors designed to crunch complex vision and imaging algorithms at high performance and low power

Nominal 600 Mpixels/sec throughput enables connection to multiple cameras, world-class computational imaging pipelines, and complex vision applications

RISCs run RTOS, Firmware, RunTime Scheduler...

Memory designed for low power, zero latency, sustained high performance through data locality

© Copyright Movidius 2014
(1) Specialized Vector VLIW Processors for Vision

Interfaces

Computational Imaging Hardware Accelerators

Vector Processors

x12

Memory Fabric

RISC-RT

RISC-RTOS
SHAVE 128 bit SIMD-VLIW Vector Processors

128/256MB LPDDR2/3 Stacked Die

DDR Controller

2x 64-bit DDR ports

128-bit AXI

256kB 2-way L2 cache

256kB 2-way L2 cache

2MB CMX (Connection Matrix) SRAM

128-bit AXI

3x 128 bit Ports

64-bit CMX Port

64-bit CMX Port

IEU

Predication

BRU

Branch Unit

VRF 32x128-bit

(12 ports)

IRF 32x32-bit

(18 ports)

VRF 32x128-bit

TRF 32 x 32-bit

1 KB D-cache

1 KB D-cache

PEU

Predication

BRU

Branch Unit

LSU0

Load-Store

LSU1

Load-Store

IAU

Integer Unit

SAU

Scalar Unit

VAU

Vector Unit

CMU

Compare-Unit

DCU

Debug

IDC

Instr Decode

APB

32-bit APB

8 parallel SHAVE VLIW Functional Units Supplied with VRF & IRF Data

128-bit Instruction-Fetch (Variable-Length Instructions max 192 bits)

Streaming

Hybrid

Architecture

Vector

Engine

Integer 8/16/32 & Fl Pt 16/32 bit support

Nominal Clock Freq = 600MHz @ 0.9V
(2) Imaging Hardware Accelerators
SIPP Computational Imaging Hardware Accelerators

- 20+ programmable hardware accelerators including:
 - Poly-phase resizer
 - Lens shading correction
 - Harris Corner detector
 - HoG/Edge operator
 - Convolution filter
 - Sharpening filter
 - γ correction
 - tone-mapping
 - Luma/Chroma Denoise
 - ..and others

- Each accelerator has
 - Memory ports
 - Local decoupling buffers
 - Ability to fully compute 1 operation per pixel per cycle

Typical SIPP Accelerator Configured for 5x5 Filter Kernel
SIPP Hardware Accelerators Details

• Myriad 2 achieves **20-30x** performance of Myriad 1
 – SHAVE performance compared to Myriad 1 roughly:

 \[
 \frac{600 \text{ MHz}}{180 \text{ MHz}} \times \frac{12}{8} = 5x
 \]
 – SIPP Hardware Accelerators in Myriad 2 can output one fully computed output pixel per cycle
 • Comparison with SHAVE-only software filters on Myriad 1 which range from 1.5 up to dozens of cycles per pixel
 • **15-25x** additional performance compared to Myriad1

• Hardware accelerator rationale fits with Moore’s law trend below 28nm
 – Memory access is expensive in terms of power
 – Memory scaling 20-30% vs 50% for logic
 – This means we can trade arithmetic OPS for less memory occupancy and lower power
Myriad 2 Detailed System Diagram

Main Bus
- DDR
- Controller
- Bridge

SW Controlled I/O Multiplexing
- UART
- ETH
- SDIO
- SPI x3
- USB3
- LPC x3
- I²S x3

SIPP Hardware Accelerators
- RAW
- LSC
- Debayer
- Chroma Denoise
- Sharpen Filter
- Polyphase Scaler
- RISC-RTOS
- L1 4/4 kB
- L2 32kB
- ROM 64kB

AMC Crossbar

CMX Memory Fabric 2MB Multi-Ported RAM Subsystem
- 32x HW Mutex

Inter-SHAVE Interconnect (ISI)
- SHAVE 0
- SHAVE 1
- SHAVE 2
- SHAVE 3
- SHAVE 4
- SHAVE 5
- SHAVE 6
- SHAVE 7
- SHAVE 8
- SHAVE 9
- SHAVE 10
- SHAVE 11

Power
- 17 independent power islands

PLL & CPM

Arbiter & 16:1 mux

L2 cache 256kB

DDR Controller

Stacked KGD
- 1-8Gbit LP-DDR2/3

MIPI D-PHY x12 lanes
- LCD
- CIF
- NAL
- SDIO
- SPI x3
- USB3
- UART
- ETH 1Gb
Myriad 2 Die

Samples Available August 2014 to Select Customers/Partners Under NDA

TSMC 28 nm HPM process
6.5mm x 6.5mm
0.4mm pitch

BGA
1Gbit LPDDR2
1x32bit
532 MHz

Myriad 2 Die, No DDR
5.1mm x 5.3mm
0.35mm pitch

WLCSP

Movidius
Myriad 2 Software Development Kit (MDK)

- Powerful frameworks for efficient application development
- Efficient tools
- Rich set of libraries and applications
- Movidius partners ecosystem

- Reference Application Examples
- Movidius Partners Applications
- Frameworks (Graph API Construction, OpenCL)
- LAMA - Linear Algebra Library
- MV CV - Vision Library
- MV ISP - Imaging Library
- Movidius Partners Libraries

- Board Support Package (BSP)
- MV182 Development Board Hardware (with Myriad 2 Vision Processor SOC)

- MoviTools
 - IDE
 - Compiler
 - Assembler
 - Simulator
 - Profiler
 - Debugger

© Copyright Movidius 2014
Myriad 2 Power Efficiency: Depth Extraction

- Depth extraction using structured light
 - Projector emits structured light pattern
 - Aligned camera captures reflected structured light pattern
 - Significant computation required to extract depth

- Achieves 30 fps < 250 mW full package power

- Resources used on Myriad 2:
 - 6 x SHAVE vector VLIW processors
 - 2 x SIPP hardware accelerators
 - Mix of 16b floating-point intermediates and 32b floating-point final output
Hard Real-time Support for Low Latency Computer Vision

- Essential for line sync based super low latency processing
- Deterministic data access due to 2MB on-chip SRAM
 - And dedicated stacked DDR (no contention with GPU etc.)
- Low latency (<2µsec worst case) interrupt handling
 - No contention with peripherals such as USB, SPI etc.
- 64 bit timestamp support

<table>
<thead>
<tr>
<th>Algorithm Example</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Haar Cascade classification</td>
<td>OpenCV compatible multi-scale Haar Cascade with 20 stages, computed using 12 x SHAVEs and 1 x SIPP accelerator.</td>
</tr>
</tbody>
</table>

Latency: For each 1080p resolution frame, calculates 50,000 multi-scale classifications in <7 msec
Conclusions

• We’re entering a new era of computational imaging

• Myriad 2: An advanced 28nm self-contained Vision Processor SOC
 – Aggregate nominal 600 Mpixel/sec throughput for complete pipeline(s)
 – Sustained performance from a highly innovative multicore memory subsystem (400GB/sec BW)
 – Low-latency for demanding vision applications by allowing flexible memory allocation lines, tiles etc. not just frames
 – 20-30x more performance per Watt compared to Myriad 1

• Myriad 2 Software Development
 – Powerful frameworks for efficient application development
 – Efficient tools
 – Rich set of libraries and applications
 – Movidius partners ecosystem
Thank you!

Q&A