Knights Landing (KNL): 2nd Generation Intel® Xeon Phi™ Processor

Avinash Sodani
KNL Chief Architect
Senior Principal Engineer, Intel Corp.
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. All products, dates, and figures specified are preliminary based on current expectations, and are subject to change without notice. Intel processors, chipsets, and desktop boards may contain design defects or errors known as errata, which may cause the product to deviate from published specifications. Current characterized errata are available on request. Any code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole risk of the user.

Intel product plans in this presentation do not constitute Intel plan of record product roadmaps. Please contact your Intel representative to obtain Intel's current plan of record product roadmaps. Performance claims: Software and workloads used in performance tests may have been optimized for performance only on Intel® microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.Intel.com/performance

Intel, Intel Inside, the Intel logo, Centrino, Intel Core, Intel Atom, Pentium, and Ultrabook are trademarks of Intel Corporation in the United States and other countries.
Knights Landing: Next Intel® Xeon Phi™ Processor

Intel® Many-Core Processor targeted for HPC and Supercomputing

First **self-boot** Intel® Xeon Phi™ processor that is **binary compatible** with main line IA. Boots standard OS.

Significant improvement in scalar and **vector** performance

Integration of **Memory on package**: innovative memory architecture for high bandwidth and high capacity

Integration of **Fabric on package**

Three products

<table>
<thead>
<tr>
<th>KNL Self-Boot</th>
<th>KNL Self-Boot w/ Fabric</th>
<th>KNL Card</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Baseline)</td>
<td>(Fabric Integrated)</td>
<td>(PCIe-Card)</td>
</tr>
</tbody>
</table>

Potential future options subject to change without notice.

All timeframes, features, products and dates are preliminary forecasts and subject to change without further notification.
Knights Landing Overview

Chip: 36 Tiles interconnected by 2D Mesh
Tile: 2 Cores + 2 VPU/core + 1 MB L2

Memory: MCDRAM: 16 GB on-package; High BW DDR4: 6 channels @ 2400 up to 384GB
IO: 36 lanes PCIe Gen3, 4 lanes of DMI for chipset
Node: 1-Socket only
Fabric: Omni-Path on-package (not shown)

Vector Peak Perf: 3+TF DP and 6+TF SP Flops
Scalar Perf: ~3x over Knights Corner
Streams Triad (GB/s): MCDRAM: 400+; DDR: 90+

Source Intel: All products, computer systems, dates and figures specified are preliminary based on current expectations, and are subject to change without notice. KNL data are preliminary based on current expectations and are subject to change without notice. 1Binary Compatible with Intel Xeon processors using Haswell Instruction Set (except TSX). 2Bandwidth numbers are based on STREAM-like memory access pattern when MCDRAM used as flat memory. Results have been estimated based on internal Intel analysis and are intended for informational purposes only. Any difference in system behavior of follow-on products may affect relative performance.
KNL Tile: 2 Cores, each with 2 VPU
1M L2 shared between two Cores

Core: Changed from Knights Corner (KNC) to KNL. Based on 2-wide OoO Silvermont™ Microarchitecture, but with many changes for HPC.
4 thread/core. Deeper OoO. Better RAS. Higher bandwidth. Larger TLBs.

2 VPU: 2x AVX512 units. 32SP/16DP per unit. X87, SSE, AVX1, AVX2 and EMU

L2: 1MB 16-way. 1 Line Read and ½ Line Write per cycle. Coherent across all Tiles

CHA: Caching/Home Agent. Distributed Tag Directory to keep L2s coherent. MESIF protocol. 2D-Mesh connections for Tile
Many Trailblazing Improvements in KNL

<table>
<thead>
<tr>
<th>Improvements</th>
<th>What/Why</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self Boot Processor</td>
<td>No PCIe bottleneck</td>
</tr>
<tr>
<td>Binary Compatibility with Xeon</td>
<td>Runs all legacy software. No recompilation.</td>
</tr>
<tr>
<td>New Core: Atom™ based</td>
<td>~3x higher ST performance over KNC</td>
</tr>
<tr>
<td>Improved Vector density</td>
<td>3+ TFLOPS (DP) peak per chip</td>
</tr>
<tr>
<td>New AVX 512 ISA</td>
<td>New 512-bit Vector ISA with Masks</td>
</tr>
<tr>
<td>Scatter/Gather Engine</td>
<td>Hardware support for gather and scatter</td>
</tr>
<tr>
<td>New memory technology: MCDRAM + DDR</td>
<td>Large High Bandwidth Memory → MCDRAM</td>
</tr>
<tr>
<td></td>
<td>Huge bulk memory → DDR</td>
</tr>
<tr>
<td>New on-die interconnect: Mesh</td>
<td>High BW connection between cores and memory</td>
</tr>
<tr>
<td>Integrated Fabric: Omni-Path</td>
<td>Better scalability to large systems. Lower Cost</td>
</tr>
</tbody>
</table>

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more information go to http://www.intel.com/performance. Results have been estimated based on internal analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance.
Core & VPU

- Out-of-order core w/ 4 SMT threads
- VPU tightly integrated with core pipeline

- 2-wide Decode/Rename/Retire
- ROB-based renaming. 72-entry ROB & Rename Buffers
- Up to 6-wide at execution
- Int and FP RS OoO.
- MEM RS inorder with OoO completion. Recycle Buffer holds memory ops waiting for completion.
- Int and Mem RS hold source data. FP RS does not.

- 2x 64B Load & 1 64B Store ports in Dcache.
- 1st level uTLB: 64 entries
- 2nd level dTLB: 256 4K, 128 2M, 16 1G pages

- L1 Prefetcher (IPP) and L2 Prefetcher.
- 46/48 PA/VA bits
- Fast unaligned and cache-line split support.
- Fast Gather/Scatter support
Threading

- 4 Threads per core. Simultaneous Multithreading.
- Core resources **shared** or **dynamically repartitioned** between active threads
 - ROB, Rename Buffers, RS: Dynamically partitioned
 - Caches, TLBs: Shared
 - E.g., 1 thread active → uses full resources of the core

- Several Thread Selection points in the pipeline. (★)
 - Maximize throughput while being fair.
 - Account for available resources, stalls and forward progress
KNL ISA

E5-2600 (SNB\(^1\))
E5-2600v3 (HSW\(^1\))

x87/MMX
SSE*
AVX
AVX2
BMI
TSX

KNL (Xeon Phi\(^2\))

x87/MMX
SSE*
AVX
AVX2
BMI

KNL implements all legacy instructions
- Legacy binary runs w/o recompilation
- KNC binary requires recompilation

KNL introduces AVX-512 Extensions
- 512-bit FP/Integer Vectors
- 32 registers, & 8 mask registers
- Gather/Scatter

No TSX. Under separate CPUID bit

LEGACY

Conflict Detection: Improves Vectorization
Prefetch: Gather and Scatter Prefetch
Exponential and Reciprocal Instructions

1. Previous Code name Intel® Xeon® processors
2. Xeon Phi = Intel® Xeon Phi™ processor
Memory Modes

Three Modes. Selected at boot

Cache Mode
- SW-Transparent, Mem-side cache
- Direct mapped. 64B lines.
- Tags part of line
- Covers whole DDR range

Flat Mode
- MCDRAM as regular memory
- SW-Managed
- Same address space

Hybrid Mode
- Part cache, Part memory
- 25% or 50% cache
- Benefits of both

16GB MCDRAM

16GB DDR

4 or 8 GB MCDRAM

8 or 12GB MCDRAM

Physical Address

Physical Address
Memory allocated in DDR by default \(\rightarrow\) Keeps non-critical data out of MCDRAM.

Apps explicitly allocate critical data in MCDRAM. Using two methods:

- “Fast Malloc” functions in High BW library (https://github.com/memkind)
 - Built on top to existing libnuma API
- “FASTMEM” Compiler Annotation for Intel Fortran

Flat MCDRAM with existing NUMA support in Legacy OS
Flat MCDRAM SW Usage: Code Snippets

C/C++ (https://github.com/memkind)

Allocate into DDR

```c
float *fv;
fv = (float *)malloc(sizeof(float)*100);
```

Allocate into MCDRAM

```c
float *fv;
fv = (float *)hbw_malloc(sizeof(float) * 100);
```

Intel Fortran

Allocate into MCDRAM

```fortran
REAL, ALLOCATABLE :: A(:)

!DEC$ ATTRIBUTES, FASTMEM :: A

NSIZE=1024

allocate array ‘A’ from MCDRAM

ALLOCATE (A(1:NSIZE))
```
Mesh of Rings

- Every row and column is a (half) ring
- YX routing: Go in Y → Turn → Go in X
- Messages arbitrate at injection and on turn

Cache Coherent Interconnect

- MESIF protocol (F = Forward)
- Distributed directory to filter snoops

Three Cluster Modes

(1) All-to-All (2) Quadrant (3) Sub-NUMA Clustering
Cluster Mode: All-to-All

Address uniformly hashed across all distributed directories

No affinity between Tile, Directory and Memory

Most general mode. Lower performance than other modes.

Typical Read L2 miss
1. L2 miss encountered
2. Send request to the distributed directory
3. Miss in the directory. Forward to memory
4. Memory sends the data to the requestor
Cluster Mode: Quadrant

Chip divided into four virtual Quadrants

Address hashed to a Directory in the same quadrant as the Memory

Affinity between the Directory and Memory

Lower latency and higher BW than all-to-all. SW Transparent.

1) L2 miss, 2) Directory access, 3) Memory access, 4) Data return
Cluster Mode: Sub-NUMA Clustering (SNC)

Each Quadrant (Cluster) exposed as a separate NUMA domain to OS.

Looks analogous to 4-Socket Xeon

Affinity between Tile, Directory and Memory

Local communication. Lowest latency of all modes.

SW needs to NUMA optimize to get benefit.

1) L2 miss, 2) Directory access, 3) Memory access, 4) Data return
KNL with Omni-Path™

Omni-Path™ Fabric integrated on package

First product with integrated fabric

Connected to KNL die via 2 x16 PCIe* ports
Output: 2 Omni-Path ports
 ▪ 25 GB/s/port (bi-dir)

Benefits
 ▪ Lower cost, latency and power
 ▪ Higher density and bandwidth
 ▪ Higher scalability

*On package connect with PCIe semantics, with MCP optimizations for physical layer
Knights Landing Products

Knights Landing Products

- **KNL**
 - DDR4
 - PCH
 - DDR Channels: 6
 - MCDRAM: up to 16 GB
 - Gen3 PCIe (Root port): 36 lanes

- **KNL with Omni-Path**
 - DDR4
 - OPF HFI
 - OPF HFI 2x100 Gb/s/dir
 - Gen3 PCIe (Root port): 4 lanes
 - Omni-Path Fabric: 200 Gb/s/dir

- **KNL Card**
 - No DDR Channels
 - MCDRAM: up to 16 GB
 - Gen3 PCIe (End point): 16 lanes
 - NTB Chip to create PCIe EP

Self Boot Socket

PCIe Card

Potential future options subject to change without notice. Codenames. All timeframes, features, products and dates are preliminary forecasts and subject to change without further notification.
Projected KNL Performance (1 socket, 200W CPU TDP) vs. 2 Socket Intel® Xeon® processor E5-2697v3 (2x145W CPU TDP)

Significant performance improvement for compute and bandwidth sensitive workloads, while still providing good general purpose throughput performance.

1. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. Source E5-2697v3: www.spec.org, Intel measured AlexNet Images/sec. All results have been estimated based on internal Intel analysis and are provided for informational purposes only. Any difference in system hardware or software design or configuration may affect actual performance. For more information go to http://www.intel.com/performance.
Backup
High Bandwidth (HBW) Malloc API

NAME

hbwmalloc - The high bandwidth memory interface

SYNOPSIS

```c
#include <hbwmalloc.h>

Link with -ljemalloc -lnuma -lmemkind -lpthread

int hbw_check_available(void);
void* hbw_malloc(size_t size);
void* hbwcalloc(size_t nmemb, size_t size);
void* hbw_realloc(void *ptr, size_t size);
void hbw_free(void *ptr);
int hbw_posix_memalign(void **memptr, size_t alignment, size_t size);
int hbw_posix_memalign_psize(void **memptr, size_t alignment, size_t size, int pagesize);
int hbw_get_policy(void);
void hbw_set_policy(int mode);
```

Publicly released at https://github.com/memkind
AVX-512 PF, ER and CD Instructions

- **Intel AVX-512 Prefetch Instructions (PFI)**
 - PREFETCHWT1
 - VGATHERPF(D,Q){0,1}PS
 - VSCATTERPF(D,Q){0,1}PS
- **Intel AVX-512 Exponential and Reciprocal Instructions (ERI)**
 - VEXP2{PS,PD}
 - VRCP28{PS,PD}
 - VRSQRT28{PS,PD}
- **Intel AVX-512 Conflict Detection Instructions (CDI)**
 - VPCONFLICT{D,Q}
 - VPLZCNT{D,Q}
 - VPBROADCASTM{B2Q,W2D}

<table>
<thead>
<tr>
<th>CPUID</th>
<th>Instructions</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVX512PF</td>
<td>PREFETCHWT1</td>
<td>Prefetch cache line into the L2 cache with intent to write</td>
</tr>
<tr>
<td></td>
<td>VGATHERPF(D,Q){0,1}PS</td>
<td>Prefetch vector of D/Qword indexes into the L1/L2 cache</td>
</tr>
<tr>
<td></td>
<td>VSCATTERPF(D,Q){0,1}PS</td>
<td>Prefetch vector of D/Qword indexes into the L1/L2 cache with intent to write</td>
</tr>
<tr>
<td>AVX512ER</td>
<td>VEXP2{PS,PD}</td>
<td>Computes approximation of 2^x with maximum relative error of 2^{-23}</td>
</tr>
<tr>
<td></td>
<td>VRCP28{PS,PD}</td>
<td>Computes approximation of reciprocal with max relative error of 2^{-28} before rounding</td>
</tr>
<tr>
<td></td>
<td>VRSQRT28{PS,PD}</td>
<td>Computes approximation of reciprocal square root with max relative error of 2^{-28} before rounding</td>
</tr>
<tr>
<td>AVX512CD</td>
<td>VPCONFLICT{D,Q}</td>
<td>Detect duplicate values within a vector and create conflict-free subsets</td>
</tr>
<tr>
<td></td>
<td>VPLZCNT{D,Q}</td>
<td>Count the number of leading zero bits in each element</td>
</tr>
<tr>
<td></td>
<td>VPBROADCASTM{B2Q,W2D}</td>
<td>Broadcast vector mask into vector elements</td>
</tr>
</tbody>
</table>
Glossary

KNL: Knights Landing
KNC: Knights Corner
HSW: Haswell
SNB: Sandy Bridge
OoO: Out-of-Order
ROB: Reorder Buffer
RS: Reservation Stations
VPU: Vector Processing Unit
EMU: Extended Math Unit
TLB: Translation Look-aside Buffer
CHA: Caching/Home Agent
PA/VA: Physical Address/Virtual Address

MCDRAM: “Multi-Channel” DRAM. High BW memory
EDC: Memory Controller for MCDRAM
MESIF: Coherence protocol (Modified, Exclusive, Shared, Invalid, Forward)
NTB: Non-Transparent Bridge
PCH: Chipset
NUMA: Non-Uniform Memory Access