Titan: enabling a transparent silicon root of trust for Cloud
Talk outline

01 Motivation and problem statement
02 System View and Integration
03 Chip Architecture
04 Feature Deep Dives
05 Building a community: Open Titan?
Motivation and architecture
The problem:
Example 1: How do we know it is our equipment?

Russian hackers found the 'ultimate' hacking tool buried in the supply chain of laptops.
Solution:
Tag and verify every device
Example 2:
Can we trust our boot chain?

BETRAYING THE BIOS:
WHERE THE GUARDIANS OF THE BIOS ARE FAILING
Solution:
Sign and verify all boot code
Conclusion: We need a silicon root of trust
Cloud security properties

Every element in the datacenter should be securely identifiable:
cryptographic attestation
Cloud security properties

1. Trusted Machine Identity
2. First Instruction Integrity
3. Tamper-evident logging
4. Trusted implementation

The first code executed should be trusted: cryptographically signed and verified firmware, live monitored for protection.
Cloud security properties

1. Trusted Machine Identity
2. First Instruction Integrity
3. Tamper-evident logging
4. Trusted implementation

All activities in the datacenter should be monitored and logged in a tamper resistant manner.
Cloud security properties

1. Trusted Machine Identity
2. First Instruction Integrity
3. Tamper-evident logging
4. Trusted implementation

Own and/or verify every piece of the stack from transistors up to critical firmware
Chip Requirements

- On-chip verified boot
- Cryptographic identity & secure mfg
- Boot Firmware signature check + monitor
- Silicon physical security
- Transparent development, full-stack
System View and Integration
Titan system integration

- CPU
- Chipset
- TITAN
- Boot FW flash

Connections:
- CPU to Chipset: SPI
- Chipset to TITAN: SPI
- TITAN to Boot FW flash: SPI

Subsystems:
- Memory subsystem
- Storage and networking subsystem
- Reset and power control
Titan system integration

CPU → Chipset → TITAN → Boot FW flash

Memory subsystem

Storage and networking subsystem

Reset and power control

Requests first boot instruction
Titan system integration

- CPU
 - Memory subsystem
- Chipset
 - Storage and networking subsystem
- TITAN
 - Reset and power control
- Boot FW flash
 - Contains (signed) boot code

- SPI connections: PCH / BMC to CPU, Chipset, TITAN, Boot FW flash
Titan system integration

- CPU
- Chipset
- PCH / BMC
- Memory subsystem
- Storage and networking subsystem
- TITAN
- Boot FW flash

Authenticates firmware, releases system reset
Reset and power control
Titan system integration

- CPU
- Chipset
- PCH / BMC
- TITAN
- Boot FW flash
- Memory subsystem
- Storage and networking subsystem
- Reset and power control
- Continuous monitoring for illegal activity
Titan system integration

CPU

Chipset

PCH / BMC

TITAN

Boot FW flash

Available for cryptographic attestation and logging

Memory subsystem

Storage and networking subsystem

Reset and power control
Chip architecture
What is Titan?

- Secure low-power microcontroller designed with cloud security as first-class consideration
- Not just a chip, but the supporting system and security architecture + manufacturing flow
Why make our own?

Implementation transparency
Complete ownership, auditability, build local expertise

Agility & velocity
Technology changes, new risk vectors arrive

No existing solutions
Vendor-agnosticity, custom features
Glossary: a quick security chip primer

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AES</td>
<td>Symmetric (shared-key) crypto algorithm</td>
</tr>
<tr>
<td>alert</td>
<td>Security critical event</td>
</tr>
<tr>
<td>BIST</td>
<td>Built in self test</td>
</tr>
<tr>
<td>BL</td>
<td>Boot loader</td>
</tr>
<tr>
<td>CA</td>
<td>Certificate authority</td>
</tr>
<tr>
<td>device state</td>
<td>Temporal state in life cycle of device (test, production, return for test, end of life)</td>
</tr>
<tr>
<td>EC</td>
<td>Elliptic curve: modern crypto algorithm</td>
</tr>
<tr>
<td>HMAC</td>
<td>Hash message authentication code</td>
</tr>
<tr>
<td>I2C</td>
<td>Two-pin low-speed peripheral interface</td>
</tr>
<tr>
<td>key mgr</td>
<td>Management of key and secret storage</td>
</tr>
<tr>
<td>NMI</td>
<td>Non-maskable interrupt</td>
</tr>
<tr>
<td>OTP</td>
<td>One-time programmable (fuse) memory</td>
</tr>
<tr>
<td>PCH</td>
<td>Intel Platform Controller Hub</td>
</tr>
<tr>
<td>PMU</td>
<td>Power Management Unit</td>
</tr>
<tr>
<td>RC</td>
<td>Resistor/capacitor clock circuit</td>
</tr>
<tr>
<td>RSA</td>
<td>Circa 1980s crypto algorithm</td>
</tr>
<tr>
<td>RTC</td>
<td>Real Time Clock</td>
</tr>
<tr>
<td>SHA</td>
<td>Hashing algorithm</td>
</tr>
<tr>
<td>SPI</td>
<td>4+ pin peripheral interface</td>
</tr>
<tr>
<td>TRNG</td>
<td>True random number generator</td>
</tr>
</tbody>
</table>
Titan specifications

- **Embedded 32b processor**
 - 8kB ROM
 - 64kB SRAM
 - 512kB Flash
 - 1kB OTP (Fuse)

- **Memory**

- **Peripherals**
 - EC/RSA crypto
 - AES/SHA/HMAC
 - Key manager
 - TRNG
 - Timers
 - USB 1.1
 - UART
 - SPI mstr/slv
 - I2C mstr/slv
 - GPIO

- **Defenses**
 - Shield
 - Temp sense
 - Volt sense
 - Device state
 - Alert resp

- **Testability / MFGability**
 - Jitter RC
 - Timer RC
 - Low speed RC

- **Debug ports**

- **Test ports**

- **Muxable data ports**

Google Cloud
Titan specifications

32b microcontroller core

- Boot ROM
- Flash for instr + data
- SRAM scratchpad
- One-time programmable fuses

Embedded 32b processor

Memory

- 8kB ROM
- 64kB SRAM
- 512kB Flash
- 1kB OTP (Fuse)

Peripherals

- EC/RSA crypto
- AES/SHA/HMAC
- Key manager
- TRNG
- timers
- USB 1.1
- UART
- SPI mstr/slv
- I2C mstr/slv
- GPIO

Defenses

- Shield
- Temp sense
- Volt sense
- Device state
- Alert resp

Testability / MFGability

- Test ports
- Low speed RC
- Timer RC
- Jitter RC

Muxable data ports
Titan specifications

Cryptographic acceleration
Key management + storage
Random number generator

Embedded 32b processor

Peripherals:
- EC/RSA crypto
- AES/SHA/HMAC
- Key manager
- TRNG
- Timers

Memory:
- 8kB ROM
- 64kB SRAM
- 512kB Flash
- 1kB OTP (Fuse)

Testability / MFGability:
- Jitter RC
- Timer RC
- Low speed RC

Defenses:
- Shield
- Temp sense
- Volt sense
- Device state
- Alert resp

Peripherals:
- USB 1.1
- UART
- SPI mstr/slave
- I2C mstr/slave
- GPIO

Muxable data ports:
- Test ports

Google Cloud
Titan specifications

Peripheral controllers
 Multipurpose IO
Custom Google features
Titan specifications

- Physical defenses
- Live status checking
- Hardware security alert response

Memory
- 8kB ROM
- 64kB SRAM
- 512kB Flash
- 1kB OTP (Fuse)

Peripherals
- EC/RSA crypto
- AES/SHA/HMAC
- Key manager
- TRNG
- timers
- GPIO
- USB 1.1
- UART
- SPI mstr/slave
- I2C mstr/slave

Defenses
- Shield
- Temp sense
- Volt sense
- Device state
- Alert resp

Testability / MFGability
- Test ports
- Jitter RC
- Timer RC
- Low speed RC

PMU
- Muxable data ports

Test ports
- Muxable data ports

Physical defenses
- Live status checking
- Hardware security alert response
Feature Deep Dives
Verified Boot
Verified boot within Titan

- Each stage verifies the next
- Earlier stages do security settings, lock out further access
- Permission levels drop at each stage, protecting critical control points
- Splitting flash code into banks allows two copies: live-updatable
- Code signing taken seriously; multiple key holders, offline logs, playbooks
1. Test logic (LBIST) and ROM (MBIST); if fail ⇒ stay in reset; else jump to ROM
2. Compare bootloader (BL) versions A + B; choose most recent
3. Verify BL signature; if fail, retry with other BL; if fail, freeze
4. Compare firmware application (FW) versions A + B; choose most recent
5. Verify FW signature; if fail, retry with other FW; if fail, freeze
6. Execute successfully verified FW
Trusted identity
Trusted chip identity

- Establish trust at manufacturing
- Each tested device uniquely identified (personalized)
 - Assigned a serial number, unique but not secret
 - Self-generates a cryptographically strong Identity Key
- Identity registered in off-site secure database
- Parts shipped, put onto datacenter devices for production
- Parts available for “attestation”, proof that they are ours
Key manager creates chip identity key

- Dedicated hardware execution
- Processor walks FSM commands
- Keys inaccessible to processor
- Identity = crypto_hash of partial secrets
 - Each comes from a different silicon technology
 - Requires attackers to defeat each
- Export enabled if FSM complete
- Export disabled after manufacture
Trusted identity (registration)

- Personalization firmware loaded
- Chip creates identity message
- Identity exported to registry via secure channel
- Identities signed by offline certificate authority
- Certificate available for installation
- Identity available for later query
Life cycle tracking using OTP Fuses

- After manufacturing, must continue to guarantee authenticity
- Define six stages, and what is enabled in each stage
 - **Raw:** no features enabled, deters wafer theft
 - **Test:** enable test features only, no production features
 - **Development:** enable production-level features for lab bringup
 - **Production:** final production features, no testability, unique keys
 - **RMA (return for test):** re-enable testability, no more production
 - **RIP:** after RMA or mfg failure, permanently disable device
- Burnable fuses track life cycle from manufacturing to production
- Each stage transition a one-way street
Life cycle tracking using OTP Fuses

Burn fuse

RAW → MFG Test → PROD → DEV → RMA → RIP
First instruction integrity
First instruction integrity

- Titan interposes on SPI, between host and system firmware Flash
- At system reset, does signature check of FW
 - Signature OK ⇒ enables system
 - Signature fail ⇒ alerts of failure
- Live monitoring
 - Snoops SPI for illegal activity
 - Unauthorized actions converted to harmless commands
SPI interposition

The challenges of SPI interposition

- Vendor agnostic requires flexibility
- SPI does not have flow control
- Passthrough latency must be minimized
- Chip & board timing a challenge
- Can affect boot latency

Outgoing SPI bus to flash

Incoming SPI bus from host

Safe command

Snoop / control logic
Physical and tamper-resistant security
Physical security & countermeasures

Anti-glitch / anti-tamper mechanisms

- Attack detection (glitch, laser, thermal, voltage)
- Fuse, key storage, clock, and memory integrity checks
- Memory and bus scrambling and protection
- Register — and memory-range address protection and locking
- TRNG entropy monitoring
- Boot-time and live-status checks
Physical security & countermeasures

Physical defenses
- Glitch
- Voltage
- Light
- Temperature

Alert responder
- Interrupt
- NMI
- Freeze
- Reset

Online checks
- Alert send
- Keymgr integrity
- TRNG integrity
- Clk integrity
- Bus parity

Physical security & countermeasures

Google Cloud
Open Titan
Moving from Titan to Open Titan

Thesis
The functional security mechanisms, provenance and digital implementation are commodities and thus good candidates for open sourcing

Evidence
Credible open ISAs, our RTL repositories, standard crypto primitives

Outcome
An open, transparent implementation of a secure cloud root of trust
What would **Open Titan** look like?

Open Titan

- Secure RISC - V 32b core
- PMU
- Testability / MFGability
 - jitter RC
 - timer RC
 - Low speed RC
- Debug ports
- Test ports
- Memory
 - ROM
 - SRAM
 - Flash
 - OTP (Fuse)
- Defenses
 - Shield
 - Temp sense
 - Volt sense
 - Device state
 - Alert resp
- Peripherals
 - DMA
 - EC/RSA crypto
 - AES/SHA/HMAC
 - Key manager
 - TRNG
 - timers
 - USB 1.1
 - SPI mstr/slvc
 - UART rx/tx
 - I2C mstr/slvc
 - GPIO
- Open source IP
- Proprietary foundry IP
- analog IP / digital wrap
- USB ports
- SPI ports
- Muxable data ports
- Muxable data ports
What would **Open Titan** look like?

Open source digital IP

Analog wrappers

- Secure RISC - V 32b core
- PMU
- Testability / MFGability
 - Jitter RC
 - Timer RC
 - Low speed RC
- ROM
- SRAM
- Flash
- OTP (Fuse)
- USB 1.1
- SPI mstr/slv
- UART rx/tx
- I2C mstr/slv
- GPIO
- DMA
- EC/RSA crypto
- AES/SHA/HMAC
- Key manager
- TRNG
- Timers
- Shield
- Temp sense
- Volt sense
- Device state
- Alert resp
- Test ports
- USB ports
- SPI ports
- Muxable data ports
- Muxable data ports

Defenses

- Open source IP
- Proprietary foundry IP
- Analog IP / digital wrap

Peripherals

Memory
What would **Open Titan** look like?

Required vendor collateral:
- STDCELL, memories, pads, etc.

Secure RISC-V 32b core

- PMU
- Testability / MFGability
 - Jitter RC
 - Timer RC
 - Low speed RC

Memory
- ROM
- SRAM
- Flash
- OTP (Fuse)

Peripherals
- DMA
- EC/RSA crypto
- AES/SHA/HMAC
- Key manager
- TRNG
- Timers
- USB 1.1
- SPI mstr/slave
- UART rx/tx
- I2C mstr/slave
- GPIO

Defenses
- Shield
- Temp sense
- Volt sense
- Device state
- Alert resp

Open source IP
- Proprietary foundry IP
- Analog IP / digital wrap
Questions

For additional information
That’s a wrap