Fujitsu High Performance CPU for the Post-K Computer

August 21st, 2018
Toshio Yoshida
FUJITSU LIMITED
A64FX is the new Fujitsu-designed Arm processor
 • It is used in the post-K computer

A64FX is the first processor of the Armv8-A SVE architecture
 • Fujitsu, as a lead partner, collaborated closely with Arm on the development of SVE

A64FX achieves high performance in HPC and AI areas
 • Our own microarchitecture maximizes the capability of SVE
Outline

- Fujitsu Processor Development
- A64FX
 - Overview
 - Microarchitecture
 - Performance
 - Power Management
 - RAS
- Software Development
- Summary
Fujitsu Processor Development
Persistent Evolution > 60 years

- Scalable Many-core Architecture
- 512-bit SIMD for HPC and AI
- High Bandwidth Memory
- Virtual Machine Architecture
- Software on Chip
- High-speed Interconnect
- HPC-ACE
- System on Chip
- Hardware Barrier
- Multi-core Multi-thread
- L2$ on Die
- Non-Blocking $
- O-O-O Execution
- Super-Scalar
- Single-chip CPU
- Store Ahead
- Branch History
- Prefetch

$ ECC
- Register/ALU Parity
- Instruction Retry
- $ Dynamic Degradation
- Error Checkers/History

* Post-K is underdevelopment by RIKEN and Fujitsu
DNA of Fujitsu Processors

- A64FX inherits DNA from Fujitsu technologies used in the mainframes, UNIX and HPC servers

High reliability
- Stability
- Integrity
- Continuity

High speed & flexibility
- Thread performance
- Software on Chip
- Large SMP

High performance-per-watt
- Execution and memory throughput
- Low power
- Massively parallel

CPU w/ extremely high throughput
- High performance
- Massively parallel
- Low power
- Stability and integrity

(© RIKEN)
A64FX Designed for HPC/AI

A64FX = CPU with extremely high throughput

1. High Performance
 - HPC/AI apps. >> General purpose CPU
 - Various data types
 (FP64/32/16, INT64/32/16/8)

2. High Throughput
 - Vector: 512-bit wide SIMD x 2 pipes /core
 - Memory: HBM2 (extremely high B/W)
 - Scalable: 48 cores, Tofu interconnect

3. High Efficiency
 - Performance
 (D|S|H)GEMM >90%
 Stream Triad >80%
 Perf-per-watt >> General purpose CPU

4. Standard
 - Binary compatibility with
 Armv8.2-A + SVE + SBSA* level3

*Arm's "Server Base System Architecture"
A64FX Chip Overview

Architecture Features

- Armv8.2-A (AArch64 only)
- SVE 512-bit wide SIMD
- 48 computing cores + 4 assistant cores*
 *All the cores are identical
- HBM2 32GiB
- Tofu 6D Mesh/Torus
 28Gbps x 2 lanes x 10 ports
- PCIe Gen3 16 lanes

7nm FinFET

- 8,786M transistors
- 594 package signal pins

Peak Performance (Efficiency)

- >2.7TFLOPS (>90%@DGEMM)
- Memory B/W 1024GB/s (>80%@Stream Triad)
A64FX Features

- Collaboration with Arm to develop and optimize SVE for a wide range of applications
 - FP16 and INT16/8 dot product are introduced for AI applications

<table>
<thead>
<tr>
<th>Feature</th>
<th>A64FX (Post-K)</th>
<th>SPARC64 XIIfx (PRIMEHPC FX100)</th>
<th>SPARC64 VIIIfx (K computer)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISA</td>
<td>Armv8.2-A + SVE</td>
<td>SPARC-V9 + HPC-ACE2</td>
<td>SPARC-V9 + HPC-ACE</td>
</tr>
<tr>
<td>SIMD Width</td>
<td>512-bit</td>
<td>256-bit</td>
<td>128-bit</td>
</tr>
<tr>
<td>Four-operand FMA</td>
<td>✓ Enhanced</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gather/Scatter</td>
<td>✓ Enhanced</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Predicated Operations</td>
<td>✓ Enhanced</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Math. Acceleration</td>
<td>✓ Further enhanced</td>
<td>✓ Enhanced</td>
<td>✓</td>
</tr>
<tr>
<td>Compress</td>
<td>✓ Enhanced</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>First Fault Load</td>
<td>✓ New</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FP16</td>
<td>✓ New</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INT16/ INT8 Dot Product</td>
<td>✓ New</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HW Barrier* / Sector Cache*</td>
<td>✓ Further enhanced</td>
<td>✓ Enhanced</td>
<td>✓</td>
</tr>
</tbody>
</table>

* Utilizing AArch64 implementation-defined system registers
A64FX Core Pipeline

- A64FX enhances and inherits superior features of SPARC64
 - Inherits superscalar, out-of-order, branch prediction, etc.
 - Enhances SIMD and predicate operations
 - 2x 512-bit wide SIMD FMA + Predicate Operation + 4x ALU (shared w/ 2x AGEN)
 - 2x 512-bit wide SIMD load or 512-bit wide SIMD store
Four-operand FMA with Prefix Instruction

MOVPRFX as a prefix instruction
- For SVE, four-operand “FMA4” requires a prefix instruction (MOVPRFX) followed by destructive 3-operand FMA3

```
MOVPRFX:  Z0 <= Z3  
FMA3:     Z0 <= Z0 + Z1 * Z2
```

Equivalent
```
FMA4:     Z0 <= Z3 + Z1 * Z2
```

A64FX implementation for MOVPRFX
- A64FX hides the overhead of its main pipeline by packing MOVPRFX and the following instruction into a single operation

![Diagram showing two instructions as a single operation]
Execution Unit

- Extremely high throughput
 - 512-bit wide SIMD x 2 Pipelines x 48 Cores
 - >90% execution efficiency in (D|S|H)GEMM and INT16/8 dot product

Peak Performance (Chip-level)

- SPARC64 VIIIfx (K computer)
 - 128-bit SIMD
- SPARC64 XIfx (PRIMEHPC FX100)
 - 256-bit SIMD
- A64FX (Post-K)
 - 512-bit SIMD

Peak Performance

- 64-bit (DGEMM): 0.128 TOPS
- 32-bit (SGEMM): 0.128 TOPS
- 16-bit (HGEMM) (INT16 dot product): >5.4 TOPS
- 8-bit (INT8 dot product) *1: >10.8 TOPS
- >21.6 TOPS

*1 INT8 dot product

C = Σ (Ai x Bi) + C

Element size:
- 8bit
- 32bit

All Rights Reserved. Copyright © FUJITSU LIMITED 2018
Level 1 Cache

- L1 cache throughput maximizes core performance
 - Sustained throughput for 512-bit wide SIMD load
 - An unaligned SIMD load crossing cache line keeps the same throughput

- “Combined Gather” mechanism increasing gather throughput
 - Gather processing is important for real HPC applications
 - A64FX introduces “Combined Gather” mechanism enabling to return up to two consecutive elements in a “128-byte aligned block” simultaneously

< Combined Gather >
Many-Core Architecture

- A64FX consists of four CMGs (Core Memory Group)
 - A CMG consists of 13 cores, an L2 cache and a memory controller
 - One out of 13 cores is an assistant core which handles daemon, I/O, etc.
 - Four CMGs keep cache coherency by ccNUMA with on-chip directory
 - X-bar connection in a CMG maximizes high efficiency for throughput of the L2 cache
 - Process binding in a CMG allows linear scalability up to 48 cores

- On-chip-network with a wide ring bus secures I/O performance

CMG Configuration

- X-Bar Connection
- L2 cache 8MiB 16-way
- Memory Controller
- Network on Chip
- HBM2

A64FX Chip Configuration

- Tofu Controller
- PCIe Controller
- HBM2
- CMG
- Network on Chip (Ring bus)
High Bandwidth

- Extremely high bandwidth in caches and memory
 - A64FX has out-of-order mechanisms in cores, caches and memory controllers. It maximizes the capability of each layer’s bandwidth

Performance
- >2.7TFLOPS

L1 Cache
- >11.0TB/s (BF ratio = 4)

L2 Cache
- >3.6TB/s (BF ratio = 1.3)

Memory
- 1024GB/s (BF ratio =~0.37)

L1D 64KiB, 4way
- >230 GB/s
- >115 GB/s

L2 Cache 8MiB, 16way
- >115 GB/s
- >57 GB/s

HBM2 8GiB
- 1024GB/s (BF ratio =~0.37)

512-bit wide SIMD
- 2x FMAs

All Rights Reserved. Copyright © FUJITSU LIMITED 2018
A64FX boosts performance up by microarchitectural enhancements, 512-bit wide SIMD, HBM2 and process technology

- > 2.5x faster in HPC/AI benchmarks than SPARC64 XIfx (Fujitsu’s previous HPC CPU)
- The results are based on the Fujitsu compiler optimized for our microarchitecture and SVE

A64FX Benchmark Kernel Performance (Preliminary results)
Power Management

“Energy monitor” / “Energy analyzer” for activity-based power estimation

- Energy monitor (per chip) : Node power via Power API* (~msec) *Sandia National Laboratory
 - Average power estimation of a node, CMG (cores, an L2 cache, a memory) etc.
- Energy analyzer (per core) : Power profiler via PAPI** (~nsec) **Performance Application Programming Interface
 - Fine grained power analysis of a core, an L2 cache and a memory

→ Enabling chip-level power monitoring and detailed power analysis of applications

<A64FX Energy monitor/ Energy analyzer>
Power Management (Cont.)

- “Power knob” for power optimization

- A64FX provides power management function called “Power Knob”
 - Applications can change hardware configurations for power optimization

 → Power knobs and Energy monitor/analyzer will help users to optimize power consumption of their applications

< A64FX Power Knob Diagram >
Fujitsu Mission Critical Technologies

- Large systems require extensive RAS capability of CPU and interconnect
- A64FX has a mainframe class RAS for integrity and stability. It contributes to very low CPU failure rate and high system stability
 - ECC or duplication for all caches
 - Parity check for execution units
 - Hardware instruction retry
 - Hardware lane recovery for Tofu links
 - ~128,400 error checkers in total

<A64FX RAS Mechanism>

<table>
<thead>
<tr>
<th>Units</th>
<th>Error Detection and Correction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cache (Tag)</td>
<td>ECC, Duplicate & Parity</td>
</tr>
<tr>
<td>Cache (Data)</td>
<td>ECC, Parity</td>
</tr>
<tr>
<td>Register</td>
<td>ECC (INT), Parity(Others)</td>
</tr>
<tr>
<td>Execution Unit</td>
<td>Parity, Residue</td>
</tr>
<tr>
<td>Core</td>
<td>Hardware Instruction Retry</td>
</tr>
<tr>
<td>Tofu</td>
<td>Hardware Lane Recovery</td>
</tr>
</tbody>
</table>

<A64FX RAS Diagram>

Green: 1 bit error Correctable
Yellow: 1 bit error Detectable
Gray: 1 bit error harmless
Software Development

- RIKEN and Fujitsu are developing software stacks for the post-K computer
 - Fujitsu compilers are optimized for the microarchitecture, maximizing SVE and HBM2 performance
- We collaboratively work with RIKEN / Linaro / OSS communities / ISVs and contribute to Arm HPC ecosystem

Post-K Applications

<table>
<thead>
<tr>
<th>Management Software</th>
<th>File System</th>
<th>Programming Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>System management for high availability & power saving operation</td>
<td>FEFS Lustre-based distributed file system</td>
<td>XscalableMP</td>
</tr>
<tr>
<td>Job management for higher system utilization & power efficiency</td>
<td>LLIO NVM-based File I/O accelerator</td>
<td>MPI (Open MPI, MPICH)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OpenMP, COARRAY, Math Libs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Compilers (C, C++, Fortran)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Debugging and tuning tools</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Linux OS / McKernel (Lightweight Kernel)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Post-K System Hardware</td>
</tr>
</tbody>
</table>
Summary

- A64FX is the first processor of the Armv8-A SVE architecture. It is used for the post-K computer.

- Fujitsu’s proven microarchitecture achieves high performance in HPC and AI areas.

- Fujitsu collaboratively works with partners and continuously contributes to Arm ecosystem.

- We will continue to develop Arm processors.
Abbreviations

- A64FX
 - RSA: Reservation station for address generation
 - RSE: Reservation station for execution
 - RSBR: Reservation station for branch
 - PGPR: Physical general-purpose register
 - PFPR: Physical floating-point register
 - PPR: Physical predicate register
 - CSE: Commit stack entry
 - EAG: Effective address generator
 - EX: Integer execution unit
 - FL: Floating-point execution unit
 - PRX: Predicate execution unit
 - Tofu: Torus-Fusion