Jintide®: A Hardware Security Enhanced Server CPU with Xeon® Cores under Runtime Surveillance by an In-Package Dynamically Reconfigurable Processor

Ao Luo

Research Scientist of the Institute of Microelectronics, Tsinghua University, China
CEO of Cataphract Microelectronics - a Startup from Tsinghua University, China

Authors: Leibo Liu¹, Ao Luo¹, Guanhua Li¹, Jianfeng Zhu¹*, Yong Wang², Gang Shan², Jianfeng Pan³, Shouyi Yin¹, Shaojun Wei¹

1 Institute of Microelectronics, Tsinghua University, China;
2 Montage Technology Co., Ltd.;
3 Qihoo 360 Technology Co., Ltd.;
* Corresponding Author: zhujianfeng@tsinghua.edu.cn

HOTCHIPS 31, Aug 20, 2019
Lenovo ThinkSystem SR651

Industrial Server CPU
- Intel Skylake Xeon® Cores
- 2.0 GHz
- 24 Cores
- TDP 95-150W

Jintide® Server CPU
- TSMC 28nm
- 15 × 20 mm²
- 0.5 GHz
- TDP 40 W
- Sample length 100us
- Sample Frequency <10 Hz

RCP Chip
- Reconfigurable Logic Array
- μController
- Data Analyzing Buffers
- High Speed SerDes

ITR Chip
- Register Clock Driver (RCD)
- Data Buffers
- PCIe upstream ports
- PCIe downstream ports

Monitor and Control CPU
- TSMC 28nm
- 15 × 7 mm²
- 1.0 GHz
- TDP 15W

Trace Peripheral Communication
- Sample length 100us
- Sample Frequency <10 Hz

RCP = Reconfigurable Computing Processor
ITR = IO TRacing
MTR = Memory TRacing
Outline

- **Motivation:** Hardware Security and Dynamic Security Check
- **Jintide Platform:** Architecture and System Features
- **Jintide Chips:** Specification and Tapeout Results
- Conclusion
Outline

- **Motivation:** Hardware Security and Dynamic Security Check
- **Jintide Platform:** Architecture and System Features
- **Jintide Chips:** Specification and Tapeout Results
- Conclusion
Motivation

- Impossible to prove if a chip is secure/trustworthy\(^\text{[1]}\)
- Hardware Trust Concern: Runtime Surveillance

Motivation

• Design a CPU chip that supports user to verify the behaviors
 • **Trace** CPU/System behavior
 • **Check** if the behavior matches **EXPECTATION**.
 • Trace and Check is done at **RUNTIME**

User Security Expectation
- Work as the Manual/Datasheet Indicated
- No Unrevealed Subsystem Activated
- No Vulnerability / Debug Features Abuse

Dynamic Security Check
Outline

- **Motivation**: Hardware Security and Dynamic Security Check
- **Jintide Platform**: Architecture and System Features
- **Jintide Chips**: Specification and Tapeout Results
- Conclusion
Jintide Platform: System Level View

Diagram showing the various components and connections of a Jintide platform, including Jintide CPU, DDR4, DIMM, Xeon Core, Register Trace Behavior Checking, PCH, PCIe, Storage (SATA, NVMe), USB, NIC, GPU, RAID, BMC, and BIOS.
#1 : How to perform check?
- **Identify** Legal (expected) Behavior, e.g. comparing to a golden model (ISA)
- **Ignore** No-harmful Behaviors, e.g. extra memory READ
- **Report** Suspicious Behaviors, e.g. incorrect memory / arch state update

#2: What needs to be traced?
- Arch State at beginning of the Interval
- Memory R/W record during Interval
- IO record during Interval
- Arch State at the end of Interval

#3: How to reduce performance impact?
- Sample Approach
Jintide Platform: Architecture and Check Flow

Software

Hardware

Initial = Beginning of Time Interval

Final = End of Time Interval
Jintide Platform: Sample Approach

- **Sample Window:** >100us
 - DIMM Trace Buffer Size per DIMM: 2.56 MB
 - PCIe Trace Buffer Size per Link per Lane: 8*100000/8 = 100KB
 - Total: 52 Lane UP+DOWN Stream = 10.4MB

- **Sample Frequency:** > 1Hz
 - Reduce one-time performance cost: e.g. Cache flush

Increase HW Threat Detection Ratio through Massive Deployment

Sample (Trace and Analysis) Model
Outline

- **Motivation**: Hardware Security and Dynamic Security Check
- **Jintide Platform**: Architecture and System Features
- **Jintide Chips**: Specification and Tapeout Results
- Conclusion
Jintide Chips: ITR

IO Tracing Chip For Skylake

Trace Peripheral Communication
- TSMC 28nm
- 15 × 20 mm²
- 0.5 GHz
- TDP 40 W
- Sample length >100us
- Sample Frequency >1 Hz

Key Parameters
- 60+ MB on chip memory
 - 2.56 MB *12 for DIMM
 - 10MB+ for PCIe
- 136 PCIe Gen3 Lanes
 - X16*3+X16*3 For PCIe
 - X4+X4 for DMI
 - X1*12 for DIMM data collection
 - X8 for Xeon Connection
 - X8 for RCP Connection
 - X1*3 UDI for Up to 4S support

Full bifurcation support : 16/8*2/4*4
Jintide Chips: RCP

RCP Chip for Data Analysis

Monitor and Control CPU
TSMC 28nm
15 × 7 mm²
1.0 GHz
TDP 15W

Key Parameters
• 16 MB on chip memory
• 3 * MCU running @ 1GHz
• Two PCIe Ports
 • X8 EP
 • X8 RC
• 3 Subsystem
• Two Reconfigurable Logic Array
• to accelerate behavior analysis (instruction emulation)
Jintide Chips: MCP (Multi-Chip Package)

Performance Description

<table>
<thead>
<tr>
<th>Performance</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Cores</td>
<td>Up to 24, Hyper-Threading</td>
</tr>
<tr>
<td>Base Frequency</td>
<td>2.0G, 2.1G, 2.2G</td>
</tr>
<tr>
<td>TDP</td>
<td>145W – 205W</td>
</tr>
<tr>
<td>Scalability</td>
<td>1S, 2S, 4S</td>
</tr>
<tr>
<td>UPI Speed</td>
<td>9.6 GT/s, 10.4 GT/s</td>
</tr>
<tr>
<td>PCH Supported</td>
<td>C620 series</td>
</tr>
<tr>
<td>DMI3</td>
<td>DMI3 x4 8GT/s</td>
</tr>
<tr>
<td>PCIe</td>
<td>PCIe Gen3 x48</td>
</tr>
</tbody>
</table>

Jintide® Server CPU

Intel Skylake Xeon® Cores

DDR4 DIMM with MTRs

RCD+DB = MTR, modified from LRDIMM buffer
Jintide Chips: Features

Jintide Secure Boot
- Root of Trust in MCP Package
- CPU Reset Hold
- BIOS Access Through PCH
- Certificate Based
- Device Verification (In Dev.)
Jintide Chips: Features

Jintide Open API (WIP)
- Encryption
- Identity (PUF)
- Key Gen/Management
- External Bahav. Tracing
 - IO Trace API
 - Memory Trace API
 - Execution Flow Rebuild
Jintide Platform and Chips: Summary

- X86 Processor with Dynamic Security Check
 - 1Hz Check Freq. Perf Loss< 10%
 - 100 us Check Interval Length
 - Physical Memory/IO Trace
 - Replay Based Behavior Analysis
- Other Values
 - Security Boot Support
 - Encryption Offloading & API
Jintide Chips: Perf. Loss vs Detection

Performance Loss vs Detection Probability graph with different M values:
- M=1
- M=100
- M=2000
- M=5000
- M=30000

Measured results:
- PerfLoss: 4.02%
- Detect: 0.004%
- SampleLen.: 100us
- SamplePeriod: 5s

Calculated result:
- PerfLoss: 0.98%
- Detect: 99.8%
- SampleLen.: 100us
- SamplePeriod: 10s

w/SPEC CPU 2017
Jintide Chips: Detection of Trojan

Example: Microcode Attack (Trojan) -- Only to illustrate detection

CPU: CPU Execution Flow
Victim Process:
- move xmm1, aes_key
 RoundKeyGen:
 aeskeygenassist xmm2, xmm1, 0x01

Hacker Process
- move xmm1, PASS_key
 RoundKeyGen:
 aeskeygenassist xmm2, xmm1, 0x01

Checked CPU Execution Flow Restore
- move xmm1, PASS_key
 RoundKeyGen:
 aeskeygenassist xmm2, xmm1, 0x01

Mismatch Found!

Example: Microcode Attack (Trojan) -- Only to illustrate detection
Jintide Chips: Detection of Vulnerabilities

Example: Spectre Attack Detection

◆ Spectre Attacks (two-stage):

- Access secrets
- Transient instructions
- Recover secrets
- Flush + Reload

◆ Detection Strategy (Speculative Replay):

- Step 1: Enable Speculative Replay
 - Length bounded: MTR trace availability
- Step 2: Record in one speculative branch, SAL contains
 - Access to $array1[x]$ --- Leaked Secret
 - Access to $array2[array1[x]]$ --- Probe Target
- Step 3: Side channel attack detect: $array2[0-255]$
 - **Probe Target is loaded by Prediction Branch**
 - **Probe Target** In SAL, not in VCACHE
 - Secret: $array1[x]$


```c
if (x < array1_size) {
  temp &= array2[array1[x] * 512];
}
```
Jintide Chips: Detection of Vulnerabilities

- **Behavior Check Model Selection**
 - Current: ISA Model
 - Move to: Micro-Architecture Model (non-deterministic?)

- **Based on Characteristic of the Attack**
 - No General Rule to Detect All Attacks
 - Not All Attacks Can be Detected by Rules
Outline

- **Motivation**: Hardware Security and Dynamic Security Check
- **Jintide Platform**: Architecture and System Features
- **Jintide Chips**: Specification and Tapeout Results
- **Conclusion**
Conclusion

Jintide®: A Hardware Security Enhanced Server CPU

- **Goal**: Hardware Security by Runtime Tracing/Checking

- **Jintide Solution**:
 1. Tracing (Arch. State, IO, Memory) with Low Sample Rate to reduce perf. impact
 2. ISA-model Replay and Assertions to check hardware behaviors

- **Jintide ICs**:
 1. Hardware Tracing Chips
 2. Reconfigurable Chip
 3. Tape out: TSMC 28nm, MCP

- **Experiment**: Performance vs Detection Ratio, Trojans/Spectre
Acknowledgement

- Gil Neiger
- Asit Mallick
- Eddie Dong
- Akhilesh Kumar
- Shalesh Thusoo
- Luke Chang
- Roy Zeng

- Sailesh Kottapalli
- Ronak Singhal
- Tejas Desai
- Howard Borchew
- Guntram Wolski
- Anitha Loke