RTX ON - THE NVIDIA TURING GPU

John Burgess, NVIDIA
INTRODUCING TURING
Greatest Leap Since 2006 CUDA GPU

Turing SM
14 TFLOPS + 14 TIPS
Concurrent FP & INT
Enhanced L1 cache
Uniform datapath & RF

Tensor Core
114 TFLOPS FP16
228 TOPS INT8
455 TOPS INT4

RT Core
First Ray Tracing GPU
10 Giga Rays/sec
Ray Triangle Intersection
BVH Traversal

10 Giga Rays/sec
Ray Triangle Intersection
BVH Traversal
INTRODUCING TURING

TU102 – TITAN RTX
18.6 BILLION TRANSISTORS

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM</td>
<td>72</td>
</tr>
<tr>
<td>CUDA CORES</td>
<td>4608</td>
</tr>
<tr>
<td>TENSOR CORES</td>
<td>576</td>
</tr>
<tr>
<td>RT CORES</td>
<td>72</td>
</tr>
<tr>
<td>GEOMETRY UNITS</td>
<td>36</td>
</tr>
<tr>
<td>TEXTURE UNITS</td>
<td>288</td>
</tr>
<tr>
<td>ROP UNITS</td>
<td>96</td>
</tr>
<tr>
<td>MEMORY</td>
<td>384-bit 7 GHz GDDR6</td>
</tr>
<tr>
<td>NVLINK CHANNELS</td>
<td>2</td>
</tr>
</tbody>
</table>

![Diagram of Turing SM72 72 CUDA Cores, 576 Tensor Cores, 72 RT Cores, 36 Geometry Units, 288 Texture Units, 96 ROP Units, 384-bit 7 GHz GDDR6 Memory, 2 NVLink Channels]
NVIDIA TURING GPU - NEW EFFICIENT SM

Turing SM >1.5x Pascal SM Performance

Tensor Core
114 TFLOPS FP16
228 TOPS INT8
455 TOPS INT4

RT Core
First Ray Tracing GPU
10 Giga Rays/sec
Ray Triangle Intersection
BVH Traversal

Turing SM
14 TFLOPS + 14 TIPS
Concurrent FP & INT
Enhanced L1 cache
Uniform datapath & RF
TURING SM

Concurrent FP & INT Execution Datapaths
Enhanced L1 cache
Uniform Datapath & RF
Built on foundation of Volta SM (V100: HPC/Datacenter solution between Pascal and Turing Architectures: see HotChips2017 talk)

Compared to Pascal, Turing provides:

- Twice the schedulers
- Simplified issue logic
- Large, fast L1 cache unified with TEX $ and Shared Memory
NEW CACHE & SHARED MEM ARCHITECTURE
Evolved for Efficiency

Compared to Pascal:
- 2x L1 Bandwidth
- Lower L1 Hit Latency
- Up to 2.7x L1 Capacity
- 2x L2 Capacity
Sub-Core

- **BRU**
 - 1 branch/4 clk

- **LO I$**

- **URF**
 - 2 kB

- **UDP**
 - 1 instr/2 clk

Warp Scheduler

- 1 warp instr/clk

Tensor Core

- FP16/INT8/INT4 Tensor/4-8 clk

Math Dispatch Unit

- 1 warp instr/clk

MIO Queue

- Load/Store/TEX

Register File

- 512*32b*32 threads = 64kB

MIO Datapath

- 64 B/clk

MIO Scheduler

- 1 warp instr/4 clk

TURING SM MICROARCHITECTURE

Evolved for Efficiency

Compared to Pascal:

- Twice the register file capacity
- Improved SIMT model & branch unit
- Concurrent FP and INT execution
- New Uniform registers and datapath
- New Tensor Core
 - 16x8x8 FP16 tensor/8 clk
 - 8x8x16 INT8 tensor/4 clk
 - 8x8x32 INT4 tensor/4 clk
- Fast FP16 math
CONCURRENT EXECUTION

Per 100 FP instructions, average 36 INT PIPE instructions (ie add, select, FP min/max, compare etc)
UNIFORM DATAPATH & REGISTER FILE

Goal: Exploit redundant computation & data across multiple threads while preserving our Independent Thread Scheduling model

Automatically promote ops/data when warp-uniform data is detected

- Compiler + hardware assist
- Executed by an independent datapath
- ‘Reverse vectorization’

Example: Enabling DX12 bindless constants with URF/UDP on Forza MS7 yielded +12.7% performance

```plaintext
UIADD3       UR13, UR9, 0x300001, URZ
ULDC.64      UR20, [UR6 + 0x18], !UP7
UIADD3       UR6, UR8, UR10, URZ
UIADD3       UR8, UR9, 0x300002, URZ
FSETP.NEU.FTZ.AND P1, PT, R15, cx[UR20][0x64], PT
ULOP3.LUT    UR12, UR13, 0xfffff, URZ, 0xc0, !UP7
...
TURING SHADING PERFORMANCE VS PASCAL

>50% Improved Performance per Core

---

Example shader | VRMark | Sniper Elite 4 | Deus Ex | SoW | 3DMark | RoTR | AoS
--- | --- | --- | --- | --- | --- | --- | ---
Relative Shader Performance | 2.0X | 1.8X | 1.6X | 1.6X | 1.6X | 1.4X | 1.2X
NVIDIA TURING GPU - NEW TENSOR CORE

Turing Tensor Core for Real-time Inference

Turing SM
14 TFLOPS + 14 TIPS
Concurrent FP & INT
Enhanced L1 cache
Uniform datapath & RF

RT Core
First Ray Tracing GPU
10 Giga Rays/sec
Ray Triangle Intersection
BVH Traversal

Tensor Core
114 TFLOPS FP16
228 TOPS INT8
455 TOPS INT4
TENSOR CORE
Breakthrough Acceleration for Computation of Matrix Multiplies

\[
\begin{pmatrix}
A_{0,0} & A_{0,1} & A_{0,2} & A_{0,3} \\
A_{1,0} & A_{1,1} & A_{1,2} & A_{1,3} \\
A_{2,0} & A_{2,1} & A_{2,2} & A_{2,3} \\
A_{3,0} & A_{3,1} & A_{3,2} & A_{3,3}
\end{pmatrix}
+ \begin{pmatrix}
B_{0,0} & B_{0,1} & B_{0,2} & B_{0,3} \\
B_{1,0} & B_{1,1} & B_{1,2} & B_{1,3} \\
B_{2,0} & B_{2,1} & B_{2,2} & B_{2,3} \\
B_{3,0} & B_{3,1} & B_{3,2} & B_{3,3}
\end{pmatrix}
= \begin{pmatrix}
C_{0,0} & C_{0,1} & C_{0,2} & C_{0,3} \\
C_{1,0} & C_{1,1} & C_{1,2} & C_{1,3} \\
C_{2,0} & C_{2,1} & C_{2,2} & C_{2,3} \\
C_{3,0} & C_{3,1} & C_{3,2} & C_{3,3}
\end{pmatrix}
\]

PASCAL
TURING TENSOR CORES

114 TFLOPS FP16
228 TOPS INT8
455 TOPS INT4
*GTX 2080 Ti

RT CORE
**Tensor Core**

Breakthrough Acceleration for Computation of Matrix Multiplies

- Multi-thread collaborative matrix math operation
  - Sharing operands across threads saves RF and shared memory BW

- Fine-grained integration inside SM
  - Provides maximum algorithmic flexibility
    - Different activation functions, Batch norm variants, etc.
    - Leverages huge storage capacity and BW provided by RF and shared mem/L1$

8b & 4b integer support with 32b accumulation for maximum inference performance
DEEP LEARNING INFERENCE ON TESLA T4

Up to 36X Faster Than CPUs | Accelerates All AI Workloads

**Peak Performance**

- **Speech Inference**
  - Speedup: 21X Faster
  - DeepSpeech 2

- **Video Inference**
  - Speedup: 27X Faster
  - ResNet-50 (7ms latency limit)

- **Language Inference**
  - Speedup: 36X Faster
  - Natural Language Processing
  - GNMT Model
ENDLESS POSSIBILITIES OF DEEP LEARNING

Deep Learning Disruption in Gaming and Professional Graphics

DYNAMIC NEURAL GRAPHICS: DLSS

VOICE COMMANDS

STYLE TRANSFER & CONTENT CREATION: GauGAN

MATERIAL & ART ENHANCEMENT

AI SLOW MOTION VIDEO

FACIAL & CHARACTER ANIMATION
NVIDIA TURING GPU – NEW RT CORE

Turing RTX is 7x Pascal Ray Tracing Performance

Turing SM
- 14 TFLOPS + 14 TIPS
- Concurrent FP & INT
- Enhanced L1 cache
- Uniform datapath & RF

Tensor Core
- 114 TFLOPS FP16
- 228 TOPS INT8
- 455 TOPS INT4

RT Core
- First Ray Tracing GPU
- 10 Giga Rays/sec
- Ray Triangle Intersection
- BVH Traversal
RTX – RAY TRACING ACCELERATED

Real-time Ray Tracing has Arrived

Attack from Outer Space UE4 Demo by Christian Hecht
PATH TRACED GLOBAL ILLUMINATION

Simulate Physically Based Light Transport by Tracing ‘Photons’ with Rays

Commonly used for CGI in films

- But many hours to produce final images on CPU

Fundamental building blocks

- Sampling
- Traversal and Intersection
- Material evaluation
PRE-RTX GPU RAY TRACING
Software Emulation for Ray/Geometry Intersection Search

Pascal SM

Shaders

Launch Ray Probe

Fetch box
Decode box
Intersection test
Sub-box or tris?

Ray/triangle intersection test

Return hit

Shading

Many thousands of instruction slots per ray
TURING RAY TRACING WITH RT CORES

Hardware Acceleration Replaces Software Emulation

Turing SM

Launch Ray Probe

Shaders

Shading

(E.g. material evaluation, importance sampling, denoising, custom intersection, etc.)

RT Core

Fetch box

Decode box

Intersection test

Sub-box or tris?

Ray/triangle intersection test

Return hit

Box Intersection Evaluators

Triangle Intersection Evaluators
ONE QUAKE II RTX FRAME

Breakthrough Acceleration Enables Real-time Path Tracing

PASCAL

GTX 1080Ti
202 ms
5 fps

TURING

RTX 2080
NO RT CORES
97 ms
10 fps

TURING RTX

RTX 2080
RT CORES ON
29 ms
34 fps

7x speedup

FP32 Cores | INT32 Cores | RT Cores | Other Graphics | Memory
REAL-TIME RAY TRACING IS HERE

GAMES
Most Anticipated Games | Biggest Franchises

ENGINE AND APIs
Support in all Major Game Engines
NVIDIA TURING GPU

Greater Than the Sum of Its Parts

Turing SM
14 TFLOPS + 14 TIPS
Concurrent FP & INT
Enhanced L1 cache
Uniform datapath & RF

Tensor Core
114 TFLOPS FP16
228 TOPS INT8
455 TOPS INT4

RT Core
First Ray Tracing GPU
10 Giga Rays/sec
Ray Triangle Intersection
BVH Traversal
PROFESSIONAL RENDERING ON QUADRO RTX

SM + RTCore + TensorCore = Accelerated Ray Tracing and AI Denoising
NVIDIA TURING GPU
Evolved for Efficiency and Breakthrough Acceleration

More Turing features: GDDR6, Variable Rate Shading, Mesh Shading, Post-L2 Cache Data Compression, NVLINK Connectivity, USBC, and many more...

THANK YOU - QUESTIONS?