A 100 MHz Floating Point/Integer Processor

Greg Taylor

Bipolar Integrated Technology, Inc.
Beaverton, Oregon

A 100 MHz Floating Point/Integer Processor

* Introduction
* Overview
* Major blocks
* Testing
* Conclusion
Features of the B3130

* Compatible with the B3110/B3120
* IEEE, DEC, and integer arithmetic
* 32- and 64-bit operands
* three 64-bit ports - 2 in, 1 out
 with programmable parity checking
* unpipelined operation at 50 MHz
* pipelined operation at 100 MHz
* three parallel functional blocks
 operate simultaneously:
 - ALU
 - multiplier
 - divide/square root
* 10KH, 100KH, or TTL I/O
Functional blocks are stacked and connected through the datapaths.
- Rectangular die:
 - Increases pins to die area ratio
 - Simplifies power distribution
- 3 layer metal with 4, 4, and 8 um pitch
- ECL internal logic, metal programmable I/O
- Major supply buses supply all core current to control droops
- Supply widths are IR drop limited
- 200K transistors, 120K resistors
- Die size: 9 mm x 18 mm
- Scalable to BIT's next generation process

Layout

<table>
<thead>
<tr>
<th>TTL</th>
<th>pads</th>
<th>pins</th>
</tr>
</thead>
<tbody>
<tr>
<td>VEE</td>
<td>27</td>
<td>24</td>
</tr>
<tr>
<td>VEEED</td>
<td>21</td>
<td>30</td>
</tr>
<tr>
<td>VCC</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>VCCD</td>
<td>43</td>
<td>56</td>
</tr>
<tr>
<td>Inputs</td>
<td>190</td>
<td>190</td>
</tr>
<tr>
<td>Outputs</td>
<td>87</td>
<td>87</td>
</tr>
</tbody>
</table>

Floating point operations:
- add, subtract, compare, round, min, max, absolute value, negate, scale

Integer operations:
- add, subtract, compare, min, max, absolute value, negate, shift, booleans

Conversions between all floating and integer formats

64-bit wide datapath includes:
- Right shifter
- LING adder
- Left shifter

Integer datapaths are a subset of floating point
- Only rotate is unsupported
- Dedicated datapaths would be faster, but would cost area, power, and complexity
Floating Point Multiplier

* Floating point multiplication
* Integer multiplication
 - signed and unsigned operands
 - 8-, 16-, and 32-bit operands
* Bit reverse
* Full 54 x 54 multiplier array
 - smaller array would limit dp performance
 - a 64 x 64 array would be 50% larger
* Conditional exponent and flag generation
* Product sticky bits included in scan chain

- Signed and unsigned operands
- B-, 16-, and 32-bit operands

Floating Point Alu

- Xexp, Yexp, Xmnt, Ymnt
- Max, Min
- Swap mux
- Right Shift
- +/-
- Left Shift
- Round
- Zexp, Zmnt
Floating Point Divide/Square Root

* Floating point division and square root
* Integer division and remainder
* 64 bit integer multiply
 - returns low 64-bits and overflow flag
 - uses existing divide unit datapaths
* pseudo-combinatorial
 - 200 MHz internal oscillator (synchronized at the start of operations)
* floating point overflow and underflow flags are available quickly - limiting the costs of implementing precise exceptions

Testing

* 277 pins at 100 MHz
* single clock controls many registers
* internal feedback is limited
* all user visible registers are scanned
 - internals of the pseudo-combinatorial div/sqrt block are not scanned
* internal test points are scanned, e.g. multiplier product sticky bits
* extra hardware was added to overcome the testing difficulties
Test Mode Features
* four separate clocks allow each of the on chip registers to be clocked independently
* data can be clocked through the part independent of the speed at which it is presented
* div/sqrt oscillator can be driven by four pins
 - 320 MHz clock requires 80 MHz inputs
 - single stepping and speed testing

Normal Clocking
```
X---M---S---L---M---S---T---Y
CLK
```

Test Mode Clocking
```
X---M---S---L---M---S---T---Y
CLK
INS
PIPM
PIPS
```

Conclusion
* the B3130 is the world's fastest IEEE floating point arithmetic processor
 - 200 MFlops peak
 - 2.4 GByte/s data bandwidth
* suitable for vector or scalar use
* designed for testability