HOT ROD™
1 Gbit/sec Data Communications

Jonathan Zierk
Gazelle Microcircuits
August 21, 1990

AGENDA

1. Introduction to Gazelle
2. Communications Trends
3. HOT ROD
4. Communications Media
5. BER Evaluation
6. Support Products
7. Future Products
INTRODUCTION TO GAZELLE

- Established in August of 1986
- First Revenue in February 1988
- Venture Capital Backing
  - Kleiner Perkins Caufield & Byers
  - Hambrecht & Quist
  - Others
- Corporate Strategy: Enhance the performance of workstations, PCs, and minicomputers with silicon-compatible gallium arsenide.
- Corporate Focus: Low-cost high-volume solutions

INTRODUCTION TO GAZELLE

- Current Product Focus
  - Programmable Logic Devices
    - 125 MHz, 5.5 ns. 22V10
  - Data Communications and Networking
    - 1 Gbit/sec communications
  - System Clocking Solutions
    - Zero $T_{pd}$ clock buffers (25-50 MHz)
COMMUNICATIONS TRENDS

- In the 1980s, computing power moved out of the mini/mainframe and into the desktop machine.

- In the 1990s, communications between desktop machines and file servers will provide the next significant increase in system performance.

COMMUNICATIONS IS THE BOTTLENECK TODAY

- In the 1980s, system performance increases were attributable primarily to the increases in the power of the microprocessors.

- In the 1990s, system performance will be enhanced through multi-processing and parallel processing architectures, relying on the communications to match the data rate of the system.

PERFORMANCE = COMPUTING + COMMUNICATIONS
COMMUNICATIONS TRENDS

COMMUNICATIONS ADVANCES SEVERELY LAG COMPUTING ADVANCES

GAZELLE'S SOLUTION - HOT ROD

- HOT ROD is a two-chip solution
  - No additional components required

- Fiber-optic and coax compatible

- 40-bit TTL-Level Data bus
  - Compatible with 32-bit uP systems

- Selectable data rates from 200-1000 Mbit/s
**HOT ROD - CLOCKING**

- Only one reference signal required
  - 20-25 MHz TTL REFCLK

- All system interface signals TTL level
  - 25 MHz maximum frequency
  - High-speed serial clock generated on chip

- Synchronous 1x, 2x clocks generated

- Receiver recovers clock and data
  - On-chip PLL operates up to 1.25 GBaud

![Diagram](image)

**HOT ROD**

**USER FEATURES**

1) TTL System Interface
   - Maximum frequency of 25 MHz

2) +5V supply

3) Strobe/Acknowledge Interface

4) Synchronous Interface Option
   - Permits state machine/control interfaces

5) 40-bit Data Bus
   - Compatible with 32-bit uP systems
   - All bits are user-definable
USER FEATURES

6) Built-in Loopback port
   - Allows system level power-up test

7) Fly-By™ termination
   - Relieves board layout constraints

8) Interface Cards for quick evaluation/prototype
   - Provides proven production solution

9) Development System
   - Allows characterization
   - Doubles as production test tool

COMMUNICATIONS MEDIA

- Coax-compatible interface
  - Differential PECL-Level interface
  - Capable of driving up to 100 feet

- Fly-By™ Termination eases board design
  - Termination restrictions alleviated
  - Reflections minimized

- Fiber-Optic compatible interface
  - Directly drives fiber-optic module interfaces
  - Compatible with LED and LASER drivers
BER EVALUATION

1) Gazelle internal BER evaluation (500 MBaud)
   - Media: RG174  Distance: 20 feet
   - Time: 50 days, uninterrupted
   - Observed BER: $2.14 \times 10^{-15}$

2) Government contractor evaluation (500 Mbaud)
   - Media: RG8  Distance: 50 feet
   - Time: 1 week, various tests
   - Observed BER: $1 \times 10^{-12}$

3) Sandia Labs internal evaluation (1000 MBaud)
   - Media: Fiber  Distance: 7 Kilometers
   - Time: 1 week, uninterrupted
   - Observed BER: $6 \times 10^{-14}$

NO ERRORS WERE OBSERVED

SUPPORT PRODUCTS

- Gazelle offers a family of board-level products to support the design-in and evaluation of the HOT ROD chipset across coax and fiber media.

- HOT ROD Coax Interface Cards
  - 400, 500 and 1000 Mbit cards

- HOT ROD Fiber-Optic Interface Cards
  - 250 Mbit today, 1000 Mbit by year-end

- HOT ROD Development System
  - BER evaluation across media, speed, environment, data pattern
  - System debugging capabilities built-in
- Industry Standard Solutions
  - Serial versions of the HIPPI standard
  - Fiber Channel solutions

- Networking Solutions
  - Proprietary networking chipsets/protocols
  - Headed toward 1 Gbit/sec LAN

- Increased performance
  - 1.5 Gbit/sec versions in 1991

- Architectural variations