POWER Overview

RISC

concurrent execution
branch unit
fixed point unit
floating point unit
multi-instructions / cycle
branch & count w/ CC 1
CR AND 1
load with update 1
fp multiply-add 2
total 5 x 25 MHz = 125 MOPS (peak)

separate instruction and data caches
caches optimized for function

uniform Instructions
4 bytes
up to 4 operands

extended storage model
real address space 4 GigaBytes (32 bit real address)
virtual address space 4 PetaBytes (52 bit virtual address)
page size 4 KiloBytes (12 bit page offset)
automatic lock grants (avoids DSI)
cache / TLB control

registers separated by function (GPRs, FPRs, CR, . . .)

I/O
memory mapped
programmable priority of I/O interrupts

Richard Oehler
IBM T. J. Watson Research Center
Yorktown Heights, New York
Logical View of POWER

POWERS Programming Model
POWER Branch Unit

Instruction prefetch
branch preprocessing
Instruction dispatch

functional registers
Condition Register (CR)
Machine State Register (MSR)
Save/Restore Registers (SRR0/SRR1)
Link Register (LR)
Count Register (CTR)

POWER Fixed Point

32 bit dataflow
GPRs
arithmetic unit
logical unit
barrel shifter / rotator
single cycle execution
POWER Floating Point

- 64 bit floating point dataflow
- FPRs
- combinatorial multiplier
- multiply-add / cycle
- 2 stage pipeline
- register renaming

POWER Storage Control

- TLBs
- cache directory
- ECC
- memory control
- 32 bit real addressing
Wide data buses provide the bandwidth required for high performance

Adaptive FIR example

4 | SUBROUTINE AFIR(HR,HI,XR,XI,YR,YI, ...,N)
5 | REAL*8 HR(1024),BETAR,XR(1024),YR
6 | REAL*8 HI(1024),BETAI,XI(1024),YI
7 | YR = 0.0
8 | YI = 0.0
9 | DO 100 I = 0,N-1
10 | YR = YR + HR(I)*XI((N-1)-I)
11 | YI = YI + HI(I)*XR((N-1)-I)
12 | YR = YR - HI(I)*XI((N-1)-I)
13 | YI = YI + HR(I)*XI((N-1)-I)
14 | 100 CONTINUE
15 | ...
Adaptive FIR example

CL.0: LFDU fp6,r31 = hr(r31,8)
LFDU fp5,r29 = xr(r29,-8)
FMA fp4 = fp4,fp6,fp5
LFDU fp3,r12 = hi(r12,8)
FMA fp2 = fp2,fp5,fp3
LFDU fp1,r30 = xi(r30,-8)
FNMS fp4 = fp4,fp3,fp1
FMA fp2 = fp2,fp6,fp1
BCTF CL.0,cr1,0x2/gt

9 compound instructions in 4 cycles
Instruction Frequencies

<table>
<thead>
<tr>
<th>Type</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Branch</td>
<td>6.1%</td>
</tr>
<tr>
<td>Load</td>
<td>33.1%</td>
</tr>
<tr>
<td>Store</td>
<td>9.6%</td>
</tr>
<tr>
<td>Compare</td>
<td>1.7%</td>
</tr>
<tr>
<td>Add/Sub (FLT)</td>
<td>15.0%</td>
</tr>
<tr>
<td>Multiply (FLT)</td>
<td>10.7%</td>
</tr>
<tr>
<td>Mlt/Add (FLT)</td>
<td>10.4%</td>
</tr>
<tr>
<td>Divide</td>
<td>6%</td>
</tr>
</tbody>
</table>

No use of CTR Register

- **Unconditional Branches**: 38.3% of Total
- **Conditional Branches**: 61.7% of Total

<table>
<thead>
<tr>
<th>Condition to Branch Distance</th>
<th>COUNT</th>
<th>TAKEN</th>
<th>NotTAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>60.6%</td>
<td>41.0%</td>
<td>59.0%</td>
</tr>
<tr>
<td>1</td>
<td>20.8%</td>
<td>32.7%</td>
<td>67.3%</td>
</tr>
<tr>
<td>2</td>
<td>10.0%</td>
<td>17.1%</td>
<td>82.9%</td>
</tr>
<tr>
<td>3</td>
<td>9.4%</td>
<td>9.3%</td>
<td>90.5%</td>
</tr>
<tr>
<td>4+</td>
<td>1.5%</td>
<td>22.7%</td>
<td>77.3%</td>
</tr>
</tbody>
</table>

Basic Block Average Length 4.4

Instruction Frequencies

- **Unconditional Branches**: 0.3% of Total
- **Conditional Branches**: 99.7% of Total

<table>
<thead>
<tr>
<th>Condition to Branch Distance</th>
<th>COUNT</th>
<th>TAKEN</th>
<th>NotTAKEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14.1%</td>
<td>98.7%</td>
<td>1.3%</td>
</tr>
<tr>
<td>2</td>
<td>1 %</td>
<td>2.3%</td>
<td>97.7%</td>
</tr>
<tr>
<td>30+</td>
<td>85.8%</td>
<td>99.9%</td>
<td>0.1%</td>
</tr>
<tr>
<td>Block</td>
<td>Average Length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>14.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>14.0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>13.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>1.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>13.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>.1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>13.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18+</td>
<td>14.6%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

-3- 9/90 (Richard Oehler)