Symposium Record

Sponsored by the Technical Committee on Microprocessors and Microcomputers of the IEEE Computer Society
This is the third Hot Chips Symposium, and looking at the advanced registration figures, it certainly won't be the last. The first Hot Chips Symposium was the vision of Dr. Robert Stewart who wanted to provide the Silicon Valley engineer with the latest information on the hottest technical advancements, and to do it with a reasonable registration fee. We have tried to hold fast to this vision, and, as a result, we have had two previous very successful symposiums.

But, Hot Chips III has exceeded all of our expectations. The symposium has taken on an international perspective with many participants from all over the world. To accommodate a large registration we have had to move the symposium to a larger auditorium and have had to schedule all social functions out of doors.

This year we have added an evening panel session entitled, “Five Instructions Per Clock: Truth or Consequences.” This session underscores the advances in technology that are the cornerstones of our “hottest” chips. These advances include superscalar, superpipeline and VLIW processor techniques.

Putting on a Hot Chips Symposium takes the dedication of many talented people. First, I would like to thank this year’s Program Co-Chairmen Forest Baskett and John Hennessy who have assembled a first-rate program committee and have worked to put together a truly impressive program. Next, I would like to thank the Organizing Committee: Bob Stewart for the many hours he has spent making the local arrangements and handling the symposium registration, Andy Goforth for his efforts in getting the publicity out in a timely fashion in spite of many obstacles, Nam Ling for organizing the publications of the symposium proceedings, Hasan AlKhatib for handling the symposium finances. Special thanks are also due to Melissa Anderson and Elaine Grimes for their help in facilitating the work of both the Organizing Committee and the Program Committee. Finally, I would like to thank the Stanford University Department of Electrical Engineering for hosting the symposium, and, in particular, Professor Joseph Goodman for his support.

Martin Freeman
General Chairman
The development of high-performance processor chips continues to be one of the most exciting areas in the computer and electronics industries. The role played by such “hot chips” has expanded dramatically in the past few years. Everything from desktop machines to mainframes to large parallel supercomputers are being constructed from these new high-performance integrated processors. In addition, many of the most interesting areas of development in software, from new operating systems and user interfaces to state-of-the-art optimizing compilers, focus on these processor chips.

This year the program committee has chosen 23 submissions for presentation. We encouraged designers to submit abstracts about chips in active development. Unfortunately, in a few cases this meant that the talks have had to be withdrawn.

While processor chips occupy a significant fraction of the program this year, we also have a number of interesting papers on special purpose processors, highly parallel processors, communications, caches, and floating point. In addition, there are several papers describing how to build systems whose performance is hot, but whose power demands and costs are “cool.” We expect that several of these hot chips will be described in longer papers in an issue of IEEE Micro in 1992.

Last year's conference was a tremendous success, filling the capacity of the presentation hall. As we go to press, current preregistration is larger than last year's total registration and we are moving to larger quarters. The success of this conference stems not only from the exciting work going on in this field, but also from the enormous efforts of the organization committee and staff. They took care of an incredible number of details (including changing the conference facility a few weeks before the conference), which made it possible for us to focus on the program. We want to thank the committee, together with everyone who submitted a paper to Hot Chips III.

But most all we want to thank the program committee for helping to solicit and review the papers. Their efforts made the job of chairing the program committee an enjoyable experience.

Forest Baskett and John Hennessy
Program Committee Co-Chairmen

A Symposium on High-Performance Chips
August 26, 1991—Memorial Hall Auditorium

8:30 – 8:45 Welcome and Opening Remarks
Martin Freeman, General Chair
Forest Baskett and John Hennessy, Program Co-Chairs

8:45 – 10:15 Session 1: High-Performance Processors – 1
Session Chair: John Hennessy, Stanford University
- SuperSPARC™: A Fully Integrated Superscalar Processor
 Greg Blanck, Sun Microsystems
 Steve Krueger, Texas Instruments
- MIPS R4000 Technical Overview
 Earl Killian, MIPS Computer Systems
- PA-RISC Processor for "Snakes" Workstation
 Charles Kohlhardt, Hewlett Packard

10:15 – 10:45 Break

10:45 – 12:15 Session 2: Highly Parallel Chips
Session Chair: Martin Freeman, Philips Research
- The LIFE Family of High-Performance Single Chip VLIs
 Gerrit Siavenburg and Yen Lee, Philips Research Palo Alto
 Andrew Huang, CMU
- The Message-Driven Processor
 William Dally, J. Stuart Fiske, Waldemar Horwat, John Keen,
 Richard Lethin, Michael Noakes and Peter Nuth
 MIT Artificial Intelligence Laboratory
 D. Scott Wills, University of Central Florida
 Andrew Chien, University of Illinois
 Salim Ahmed, Paul Carrick, Roy Davison, Greg Fyler
 Steve Lear, Mark Vestrich and Teg Nguyen, Intel
- The TRW CPUAX Superchip
 A. Miscione, R. Almeida, H. Hennecke and R. Mann
 TRW Electronics and Technology Division

12:15 – 1:45 Lunch at Wilbur Hall Canopy

1:45 – 3:15 Session 3: High-Performance Processors – 2
Session Chair: Forest Baskett, Silicon Graphics
- An 80 MHz 64-Bit Floating Point RISC Processor
 with Direct DRAM Support
 James Hesson, Micron Technology
- The i860™ XP: 2nd Generation of the i860™
 Supercomputing Microprocessor Family
 David Perlmutter and Michael Kagan, Intel Israel
- Beyond Claims of Free Transistors and Abundant
 Instruction-Level Parallelism
 Michael Smith, Stanford University

3:15 – 3:45 Break

3:45 – 5:15 Session 4: Low Power and Low Cost
Session Chair: Alan Smith, U.C. Berkeley
- Tera microCORE Chipset
 Greg Favor, Tera Microsystems
- The SparKIT™ Chipset
 Mohammed Wasti, LSI Logic Corporation
- SPARCore Modules
 Raju Vegesna, Ross Technology

5:15 – 7:15 Reception at Wilbur Hall Canopy

7:30 Evening Panel Session
Five Instructions Per Clock: Truth or Consequences
Session Chairs: Alan Smith, U.C. Berkeley and John Mashey, MIPS
Computer Systems
Panelists: Joseph A. Fisher, Hewlett Packard Laboratories; Norm Jouppi,
DEC Western Research Lab; Monica Lam, Stanford University; James
Smith, Cray Research; David Wall, DEC Western Research Lab
August 27, 1991—Memorial Hall Auditorium

9:00 – 10:30 **Session 5: Communications**
Session Chair: Teresa Meng, Stanford University
- A GaAs 200 Mbps 64x64 Crosspoint Chip
 Ron Cates, Vitesse Semiconductor
- An Enhanced Crossbar Router Chip for a Shared Memory Multiprocessor
 Henry Minsky, Tom Knight and André DeHon, MIT AI Lab
- The NEURON Chip Family Architecture
 Robert Dolin, Echelon
- The Protocol Engine Chipset
 Des Young, Protocol Engines

10:30 – 11:00 Break

11:00 – 12:30 **Session 6: Caches and Floating Point**
Session Chair: John Crawford, Intel
- MIPS R4000 Caches and Coherency
 Paul Ries, MIPS Computer Systems
- The Megacell Differentiated Floating Point Product Family
 Merrick Darley, Don Steiss, Peter Groves, David Bural
 Maria Gill and Tod Wolf, Texas Instruments
- 82495DX/82490DX: A High-Performance 2nd Level Cache for the I486™ DX CPU
 Adi Gobert, Intel Corporation

12:30 – 2:00 Lunch at Wilbur Hall Canopy

2:00 – 3:30 **Session 7: Special Processors**
Session Chair: John Mashey, MIPS Computer Systems
- A Smart Frame Buffer
 Joel McCormack, DEC Western Research Laboratory
 Bob McNamara and Lindsay Gage, DEC
- CNAPS (Connected Network of Adaptive ProcessorS)
 Dan Hammerstrom and Gary Tahara, Adaptive Solutions
- SMM, The “Virtual 386™”
 Dave Vannier, Intel

3:30 – 4:00 Break

4:00 – 5:00 **Session 8: High-Performance Processors – 3**
Session Chair: Dave Ditzel, Sun Microsystems
- National’s Swordfish — A Superscalar with DSP
 Reuven Marko and Motti Beck, National Semiconductor
- T9000 — Superscalar Transputer
 Bob Krysiak, Richard Forsyth and Roger Shepherd
 INMOS Ltd. — SGS-Thomson Microelectronics

5:00 Closing Remarks

Organizing Committee

General Chairman:
Martin Freeman, Philips Research

Program Co-Chairmen:
Forest Baskett, Silicon Graphics
John Hennessy, Stanford University
Treasurer:
Hasan AlKhatib, Santa Clara University

Registration Chairman and Local Arrangements Chairman:
Robert Stewart, Stewart Research

Publicity Chairman:
Andre Goforth, NASA Ames Research Center

Publications Chairman:
Nam Ling, Santa Clara University

Program Committee

Co-Chairmen:
Forest Baskett, Silicon Graphics
John Crawford, Intel
David Ditzel, Sun Microsystems
John Mashey, MIPS Computer Systems

Members:
John Hennessy, Stanford University
Teresa Meng, Stanford University
Alan Smith, U.C. Berkeley