The Project

- Highly Integrated SPARC processor
- SPARC V8 32-bit architecture
- Processor targeted for low cost systems
- The first of a series
- Reusable design core
Tsunami Functionality

- SPARC V8 Integer Unit
- IEEE 754 Floating Point Unit
 FPU core licenced from Meiko Ltd, UK
- SPARC reference MMU
- SUN-4M IOMMU
- 4K Instruction Cache, 2K Data Cache
- Memory controller (direct DRAM interface)
- Sbus controller (Sbus rev A.2 compatible)
- IEEE 1149.1 JTAG controller and clock controller
- 288 Pin TAB Package
The Challenge

- Short time-to-**volume** - 10^3 of MOS is as quickly as possible
- Low manufacturing cost
- High level of functional integration on-chip
- Integrate into existing multi-vendor CAD environment
 - Unix, Verilog **HDL**, SynOpSys **synthesis**, Motive **Timing Analyzer**
- **Full Custom Performance in ASIC Design Cycles**
- Utilize Existing Expertise
 - ASIC designers, Computer architects, few physical designers

The Solutions

- **Short time-to-volume**
 - Requires "correct-by-construction" design methodology
 - First Silicon must meet spec
 - Leverage Heavily

- **Low cost**
 - Use mature Silicon technology
 - Selected TI's .8micron, 2 layer metal, mainstream process
 - TAB packaging

- **High level of integration**
 - "Custom" style density required
 - Datapath Automation

- **Use existing staff; primarily ASIC design experience**
 - Use logical & physical synthesis to de-skill custom IC design

- **Integrate into existing multi-vendor CAD environment**
 - Open interfaces,
 - Unix level access to database
Overall Approach

- High Leverage
- Simple Efficient Pipeline
- High level of Testability/Debugability
- Vertical Design Engineers
- Conservative Circuit Design
- Largely automated CAD flow
 Selected Silicon Compiler toolset (GDT) from Mentor Graphics

Leverage Areas

- Partnership with Si Vendor (Texas Instruments)
 Std. Cell Library in GDT
 Expertise in RAM array design
 Expertise in GDT tools

- Sun existing designs:
 Utilized a debugged 5-stage IU pipeline
 Large suite of diagnostics and tests from other projects

- Licensed the Floating Point Core from Meiko Ltd.
 Fully verified IEEE compliant design with verification suite

- Partnership with Mentor Graphics
 Design of speed critical "generator" based sections
Testability, Clock & JTAG

- IEEE 1149.1 JTAG compliance including boundary scan.
- Core is on one single scan loop (about 3500 FFs)
 ATPG has been run on Tsunami with 90+% fault coverage
- Clock control allows precise clock-stop and single-stepping.
 Tsunami is the source for system & Sbus clocks - Simplifies system design
 Two level clock buffering with well matched skews
 Used selected events as triggers to stop clocks during system debug
- Nondestructive Scan.
 Enabled dump-modify-restore operations in systems and on testers
- Utilized scan for timing debug on testers
 Stretch cycles selectively to identify failing cycles.
 Dump scan chain to view affected FFs and compare with simulations to identify failing long paths.

CAD Approach

- "Tall-Thin" Vertical Design Engineers.
 - Vertical Responsibilities:
 Verilog RTL
 Synopsys
 Unit-level Verification
 Timing analysis (pre and post layout)
 Megacell Functional and timing Specs
 Unit-level layout
 Scan connectivity and verification
 Unit-level switch-simulation
 Unit-level Physical Design Verification (DRC, LVS)
 - Global Group did megacells, IOs, chip-composition and verification

- Compiled Custom Design:
 - A few timing/area critical blocks/cells done as hand-optimized custom
 e.g. RAMs, TLB, Reg Files, ROM, Std. Cells, Fast ALUs etc.
 - Some regular structures designed using Data Path Compilers
 Provide reasonable density, flexibility to changes, timing remains stable
 - Most control logic layout used Auto place and route tools.
 Provided 100% route completion, fully DRC and LVS clean
The Design Flow

- Verilog RTL
- FloorPlanning
- Megacell Blocks
- DataPath Blocks
- Control Blocks
- Chip Integration
- Test Tape
- Mask Tape

CAD Approach (contd...)

- Databases:
 - Central Databases with SCCS revision control
 - Access from two coasts, since the design team was in Mtn. View and Boston.
 - All tools centralized
 - Unified CAD and network environments for all designers

- Automation:
 - Push button flow for SPR (Std. Cell Place and Route) and DPR (Data Path Route)
 - Automatic post-placement scan chain stitching
 - Automatic post-placement Clock buffer insertion
 - Leaf cells laid out in GDT, automatically characterized and verified using a flow called "autochar".

- AutoChar flow for Libraries:
 - Ran HSPICE characterization on all leaf cells. Provided timing data.
 - Generated a cell database called CDB.
 - CDB provided a consistent source for other library views
CAD Approach (Contd...)

- **Timing:**
 - Initial constraints provided to Synopsys. Wireload models used.
 - Block level route parasitics extracted to get block level timing.
 - Chip route parasitics extracted to get overall timing.
 - Resistive and cross-coupling effects of long wires included.

- **Closing the Loop:**
 - Instruction-by-instruction comparison of simulations with SPARCSim (Sparc Architectural Simulator)
 - Full-chip post-layout extracted gate-level Verilog regression
 - Full-chip backannotated timing

- **Management:**
 - Unified task-tracking database provided a mechanism to tie in weekly individual status reporting with schedule updating and tracking.
Resources

- **Manpower:**
 - 25 engineers at Sun including both coasts (peak was higher)
 - Only two mask designers needed
- **Tools & vendor selection to tapeout was 15 months. Silicon 18 months**
- **Machines:**
 - Verification of the RTL design took the most resources
 - About 80 Sun servers of the 4/470 class were used for simulations/ regressions/vector-extraction
 - About 15 machines of the same class were used for Physical Design validation and LSIM regressions.
- **Licenses:**
 - Site Licenses for Verilog, Synopsys and Motive licenses.
 - 15 GDT licenses, 4 Checkmate licenses, 4 Compose licenses.

 Most licenses were floating ones

TSUNAMI SPARC PROCESSOR
Sun Microsystems Inc.

What We Learned

- **Turnaround times:**
 - Quick iterations from RTL to Layout to RTL are key
 - Enable early design decisions.
- **Automation:**
 - Automated flow is a good choice when you can compromise on area but not on schedule
- **CAD Tools:**
 - Tool openness is crucial. Ability to choose the best point tools is vital.
 - Close interaction with the vendor is important when pushing the envelope.
- **Design Environment:**
 - Central databases, revision control and unified environments are essential while managing large/multi-coastal teams.