THE LR33020 "GRAPHX" PROCESSOR:

A MIPS-RISC BASED GRAPHICS PROCESSOR FOR X-TERMINALS

Sanjay Desai
MIPS-DIVISION, LSI LOGIC CORP.

AGENDA

- Technical Design Goals
- Target Applications
- Feature Overview
- Example X-Terminal Systems using LR33020
- Performance
- Summary
TECHNICAL DESIGN GOALS

Design a Solution for High-End, Low-Cost, Graphics Control Applications that:

- Retains the Strengths of the MIPS Architecture:
 - High Performance over Several Applications
 - Usage of the MIPS Compilers and Development Tools

- Builds Upon the Advantages of the LR33000 Implementation:
 - High Integration and Minimal System Cost
 - Simple System Design

- And Adds Value (for Graphics Applications & X-Terminals) by:
 - Integrating Graphics and Video Control Functions
 - Providing Increased Bandwidth to Memory
 - Tightly Coupling the CPU and Graphics H/W to Minimize Overhead

CONCEPTUALLY "GRAPHX" IS:

```
LR33000

ENHANCED MEMORY INTERFACE

VIDEO & GRAPHICS CONTROLLER

LR33020 "GRAPHX"
```
TARGET APPLICATIONS

- X-Window Terminals
- Laser Printers
- PC Graphics Add-In Cards
- Work Station Frame Buffer Controllers
- High Performance Plotters and Printers

224 PIN PGA
208 PIN MQNAO

LR33020: SIMPLIFIED BLOCK DIAGRAM

MIPS COMPATIBLE CORE

CPU
4Kbyte Icache
1Kbyte Dcache

GRAPHICS COPROCESSOR

Bit-Bit Processor
Graphics DMA

INTEGRATED SYSTEM FUNCTIONS

VIDEO
FIFO,DMA,Timing
BUS Arbiter
4:Word Write Buffer
SRAM and I/O Controller
TIMERS
PS/2 Port
DRAM/VRAM controller
FEATURE OVERVIEW

- Modified LR33000 Functionality:
 - R3000 Compatible CPU Core
 - 4K Byte Instruction Cache and 1K Byte Data Cache
 - Two Counter/Timers
 - 4 Deep Write Buffer

- Graphics and Video Support:
 - Dedicated Bit Blt Coprocessor (BBCP)
 - Flexible Video Timing Generation
 - Video Data FIFO for DRAM Based Frame Buffer - can double as h/w cursor storage for VRAM based Frame Buffer systems
 - 4 DMA Channels for Pixel Moves and Display Refresh

FEATURE OVERVIEW (contd.)

- Enhanced Memory Interface:
 - Direct Support of Interleaved DRAM (64 bit datapath to external memory)
 - VRAM Support
 - Direct Interface to 8 bit PROMs
 - Minimizes External Programmable Devices
 - 4 Independent Regions with Programmable Wait State Generation
BIT BLIT COPROCESSOR (BBCP)

- Implemented as MIPS Coprocessor2:

 Uses Coprocessor Instructions: MTC2, MFC2, SWC2, LWC2
 for Transfers Between BBCP Registers, CPU Registers, and Memory

 Uses newly defined Coprocessor 2 instructions for sequencing pixel data through the bit-bit datapath

- Performs Source to Destination Data Moves with Bit Alignment
- 16 Function Logical Unit
- Supports Color Expansion for Efficient Font Bit Maps
- Hardware Support for Bitmap Transparency
- Supports Various Pixel Sizes: 1, 2, 4, 8, 16, 32 Bits
- Utilizes Two DMA Channels to Control Bit Block Transfers
- BBCP Data is not Cached
- BBCP Data Utilizes Burst Mode Write Bypassing Write Buffer

LSI LOGIC

BBCP DATAPATH

Source Data DMA

4 Word Source FIFO

Previous src reg

Pixel Extractor and Barrel Shifter

Color Expander

Mask Generator

Raster-op Processor

Bit Swizzling Function

Destination data DMA

Destination reg

To/from frame buffer memory

LSI LOGIC
BBCP INSTRUCTIONS

- Utilizes Cop 2 "Draw and Step" Instructions: SSTEP, WSTEP, BSTEP, SBSTEP
- Control Data Transfers through BBCP
- Each Step Instruction Moves 1 or 4 Words
- DMA Channel Does Address Generation, DRAM Controller Handles Execution
- Pipelined Operation Enables Optimizing Performance:

 Three Step Instructions Can Be Present in COP2 Pipeline
 without Stalling CPU

BBCP INSTRUCTIONS (contd.)

SSTEP: Steps to the next word in the Source queue. If queue empty initiate another DMA fetch of the source pixel data

WSTEP: Write the processed pixel word back to the current destination location

BSTEP: Step to the beginning of next destination line and write the processed pixel word

SBSTEP: Clears the source queue, step to the beginning of next source line and initiate another DMA fetch of source pixel data

The WSTEP and BSTEP intrns have optional flags to take care of boundary conditions and special VRAM functions (eg. block write)
VIDEO TIMING GENERATOR

- Programmable Generation of HSYNC, VSYNC, and BLANK Signals Using Registers and Comparators
- Asynchronous Video Clock Input
- Bidirectional VSYNC for Printer Support
- Optional composite sync generation
- Optional Interrupt on a Single Scan Line (for sw cursor)
VIDEO FIFO

- 32 by 32 Bit FIFO and Video Shifter
- Targeted at Low Cost DRAM only Based Systems for:
 - High Resolution Monochrome Displays
 - Medium Resolution Color Displays
 - High Resolution Monochrome Laser Printers
 - High Resolution Color Laser Printers
- DMA Controller Transfers Blocks of Refresh Data to FIFO from DRAM to Minimize Bus and CPU Overhead
- Serial Data Output: 1, 2, 4, 8 Bits/Clock Period
- Implements 64*64*2 Hardware Cursor in VRAM Based Systems

LSI LOGIC

LR33020 Based MONOCHROME X-TERMINAL SYSTEM

Ethernet/RS-232

LAN INTERFACE

PROM 512Kx8

DRAM BANK0 1M x 32

DRAM BANK1 1M x 32

Keyboard

Mouse

UART

1280 * 1024 Monochrome Monitor

LSI LOGIC
Performance

<table>
<thead>
<tr>
<th>Object</th>
<th>(Kobj/sec) (8 bit/pixel system)</th>
<th>LR33020 33mhz</th>
<th>Magnum 33mhz</th>
<th>DECfb 33mhz</th>
<th>DECStd 33mhz</th>
<th>HP 66mhz</th>
</tr>
</thead>
<tbody>
<tr>
<td>10x10 Solid FILL</td>
<td>101a/140b</td>
<td>147</td>
<td>39</td>
<td>88</td>
<td>145-213</td>
<td>278</td>
</tr>
<tr>
<td>10x10 Stippled FILL</td>
<td>105</td>
<td>34</td>
<td>22.6</td>
<td>31</td>
<td>96-155</td>
<td>136</td>
</tr>
<tr>
<td>10x10 Opaque st. FILL</td>
<td>105</td>
<td>34.9</td>
<td>10.3</td>
<td>31</td>
<td>96-129</td>
<td>136</td>
</tr>
<tr>
<td>10x10 COPY</td>
<td>55.4</td>
<td>10.3</td>
<td>1.78</td>
<td>1.78</td>
<td>10.0</td>
<td>1.0</td>
</tr>
<tr>
<td>100x100 Solid FILL</td>
<td>55.4</td>
<td>10.3</td>
<td>1.78</td>
<td>1.78</td>
<td>10.0</td>
<td>1.0</td>
</tr>
<tr>
<td>100x100 Stippled FILL</td>
<td>1.751</td>
<td>.767</td>
<td>.767</td>
<td>.767</td>
<td>.767</td>
<td>.767</td>
</tr>
<tr>
<td>100x100 COPY</td>
<td>2.1</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

a: without VRAM block write
b: using VRAM block write

LSI LOGIC
PHYSICAL CHARACTERISTICS

Frequency: 25, 33, and 40MHz Versions
Package Styles: 208 Pin MQUAD and 224 Pin CPGA
Power: 2.5W at 25MHz to 4.0W at 40MHz
Technology: LCB007 (0.7u l-effective), 2 layer metal, std. cell
Transistors: ~500,000

SUMMARY OF FEATURES

- Targeted For High-End, Low-Cost, Graphics Controller Applications
- High Integration: CPU+I/D Cache+Timers+Memory Controller+Graphics+Video
- Software Compatible with R3000
- Graphics Extensions Provided By Coprocessor Instruction Set
- Directly Interfaces with VRAMs, Interleaved DRAMs, SRAMs, 8 Bit PROMs
- 25MHz, 33MHz, and 40MHz Versions
- Single 1X Clock Input
- Reduced Power Consumption: 2.5W at 25MHz
- Implemented in 1 Micron Drawn, Cell Based Technology: LCB007