The SBus GoldChip™
A High Performance SBus Interface/DMA Controller

Martin Sodos
Sun Microsystems

Hot Chips IV

Design Goals

- Complete implementation of SBus Spec B.0 and the IEEE P1496 draft standard
- "Glueless" Programmable Peripheral Bus
- Full-featured 8-channel DMA Engine
- High Performance (> 160 MByte/S) BW
- High Level of Integration
- Support and Conformance to IEEE 1149.1 JTAG
The LBus

(The SBus GoldChips' Peripheral Bus)

Has the unique capability of looking like three separate peripheral buses

- Non-multiplexed 32-bit address and data bus
- Multiplexed 64-bit data with 32-bit address bus
- Handshake protocol for "oldstyle" DMA devices

Switchable 'on the fly' from protocol to protocol on a cycle-by-cycle basis, without timing delays or performance penalties.

Patent Applied For

The LBus (Cont.)

- May be dynamically configured as big or little endian
- Will accept external acknowledgment, internal count, or combinations
- Supports atomic operations
- Provides burst support even with portsizes < 32-bits
- Provides dynamic sizing in both mux and non-mux modes
- Programmable timing on control signals allow for tuning to individual device requirements
- Bandwidth exceeds 160 MB/S
Process Summary

- Triple metal (2.0/2.0/2.0)
- 0.7µ Leff
- approx. 380,000 transistors
- 304 Lead thermally enhanced PQFP
- 128-bit wide internal datapaths

Complete Implementation of SBus Spec B.0 and IEEE P1496 means

- All Burst Modes
- Supports SBus Parity
- Support Atomic Transfers
- Meets all AC and DC specifications
- Works correctly with all compliant SBus controllers produced to date, and anticipated in future.
- NO EXCEPTIONS
Full-featured DMA Engine

- 8 channels
- Control block chaining (up to 128 blocks)
- Dynamic Chaining

 Blocks may be added/deleted/modified while channel is active.

 Protocol prevents race conditions.

- External control blocks

 May be placed on either SBus or LBUs

 Are fetched and loaded automatically as required

- All channels may be active simultaneously and interleave execution (channel interleave)

Sample Dynamic Chaining Procedure

- To insert a new control block into an existing chain without stopping DMA execution:
DMA Engine (Cont.)

- DMA arbitration may be internal or external.

 If internal, the GC offers a unique arbitration algorithm based on the FIFO, and internal/external bus availability to the chip.

- SBus and LBus may transfer data simultaneously (bus interleaving).

- The GC may serve as either master or slave on the LBus portion of a DMA transfer.

- Scatter/Gather operations are supported.

- Multiple instantiation of same control block is supported.

- Chain and individual control block execution loops are supported w/multiple loop nesting.

GC Support of DMA Transfers

<table>
<thead>
<tr>
<th>Master Mode</th>
<th>Slave Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>L -> S</td>
<td>GC signals need to load first slice, and completion of 'S' portion of each slice, and implicitly need to load following slice.</td>
</tr>
<tr>
<td>S -> L</td>
<td>GC signals start of transfer and after each slice is transferred.</td>
</tr>
<tr>
<td>L -> L</td>
<td>GC signals start of transfer and after each slice is transferred.</td>
</tr>
<tr>
<td>S -> S</td>
<td>GC signals start of transfer and after each slice is transferred.</td>
</tr>
</tbody>
</table>

5.1.5
DMA Control Blocks

GC control blocks use the concept of being armed and triggered

- Three modes of execution are supported:

 Single execution mode: A block must be both armed and triggered to execute

 Auto-arm mode: A block arms itself and needs only be triggered

 Auto-execute mode: Block arms and triggers itself (example: once the first block in a chain is executed, the remainder in auto-execute mode 'load and go' automatically)

Resource Based Arbitration

- Resource based arbitration supports the 160 MB/S bandwidth requirement for the chip

- Algorithm replaces fixed algorithm or priority schemes

- GC evaluates buffer capacity, internal bus availability, external bus activity and other resources to determine best way to proceed

- Algorithm is hardwired and does not add latency or a performance penalty

- May be defeated on a channel basis by “wait on resource” flag under special case conditions
Transfer Slicing

- Transfers are broken up into “slices” or packets
- GC intelligently compares slice sizes to available buffer capacity (a resource)
- Works in conjunction with resource based arbitration algorithm
- Algorithm strives to keep buses active continually
- Channel ordering is affected by selection of slice size in driver program

Patent Applied For
GC Datapaths

- 5 stage data pipelining
- Pack/unpacker module assembles incoming data to 64-bit widths, and disassembles outgoing data as required for smaller port sizes
- Byte-replicator module duplicates bytes (and halfwords and words) for writes to larger port sizes
- Big-little endian swapper supports little endian conversion for such devices on the LBus
- Staging registers next to each bus and surrounding the FIFO to meet strict timing requirements
- Dataflow structure is symmetric around the middle to either right or left. Transfers conceptually are made either SBus to LBus to/from FIFOs.

Buffer Configurations and Capacity

- One 256-byte 3 port L -> S FIFO. Data is written from the LBus and can be read by either bus.
- One 256-byte 3 port S -> L FIFO. Data is written from the SBus and can be read by either bus.
- Two 128-byte 3-port PIO FIFOs. One FIFO each is dedicated to the LBus and SBus.
- Three 64-byte 4-port rams, for internal DMA control block storage.
Summary

- High Performance Flexible DMA Engine
- Full and Comprehensive 64-bit SBus Interface
- High level of Integration
- Innovative approaches to Arbitration and Bus Utilization Produce Sustainable High Transfer Rates