Fujitsu MB92831
The first member of Fujitsu's µVP Series of vector coprocessors.

- Local Knowledge is providing Fujitsu with English language technical support. Local Knowledge is also writing a series of manuals that describe the µVP Series.
- The MB92831 was designed at Fujitsu's R&D facility in Kawasaki, Japan (near Tokyo). The principle designers were: Hideoki Iino, Hiromasa Takahashi, Takao Sukemura, Masaharu Kimura, Koichi Fujita, and Shosuke Mori. Mr. Takahashi works for Fujitsu Labs. Everyone else works for the Semiconductor Group within Fujitsu Limited.
- The µVP technology was introduced at ISSCC last February. The MB92831 was announced in late June. Several design wins exist in both the U.S. and Japan.

Fujitsu claims that a computer system containing a single 70 MHz MB92831 can execute the double precision LINPACK benchmark at 42.7 Mflops.

- A µVP is not a microprocessor. An external device must initialize its command buffer and tell it to start. An external device must handle all µVP exception conditions (unless they are masked off). A µVP cannot accept interrupts. It can only address 32 bit and 64 bit data aligned on 32 bit or 64 bit boundaries.
- Most embedded µVP design wins combine it with Fujitsu's SPARC Lite embedded microprocessor (because software support for the combination is available from the Portland Group). However, any microprocessor will work. If a µVP system contains a FORTRAN compiler, a "big-endian" microprocessor works best.
- The MB92831 has 141 vector instructions, 57 scalar instructions, and 8 general control instructions. The instruction set includes a scatter/gather (indirect addressing) vector load instruction.
- As demonstrated above, "chaining" is automatic.
The MB92831 is Fujitsu's first commercial application of its new 0.5 micron CMOS process. It uses three metal layers. The first two layers have a 2.1 micron pitch. The third layer has a 4.2 micron pitch.

The MB92831 contains approximately 1.5 million transistors on a die 15.99 mm by 15.99 mm.

The µVP supply voltage is 3.3 volts.

The MB92831 is available in a 256 pin, ceramic, SQFP with a lead pitch of 0.5 mm.

All members of the µVP Series have an IEEE 1149.1-1990 standard test access port (the JTAG standard).

Getting data into and out of the chip is a problem that all of the fast floating point chips share. The µVP architecture supports multiple load/store pipelines, a unique advantage. However, the first µVP chip, the MB92831, has only one load/store pipeline.

With the exception of the vector and mask register sets, all other MB92831 registers can be accessed from the host microprocessor.

System software cannot "context switch" a member of the µVP Series. Therefore, in time sharing systems, designers typically use between two and four µVP chips to each host microprocessor.

CAN'T CONTEXT SWITCH QUICKLY

⇒ MULTIPLE CHIPS FOR MULTIPLE PROCESSES
The command buffer contains 256 thirty-two bit registers. They can contain instructions or immediate data.

Using a special instruction, the command buffer can reload itself. However, an external host processor must load the first command block.

The instruction set supports two conditional branch instructions. However, the instruction set does not support subroutines.

The vector register set contains 8 Kbytes. The scalar register set is 128 bytes (32 registers long, 32 bits wide). The mask register set contains 64 bytes.

A programmable vector length register holds the logical length of every register in the vector register set (they are all the same length). Depending upon the value stored in the vector length register, the number of vector registers varies, either 8, 16, 32, or 64 registers.

The vector length register also controls the number of mask registers, either 2, 4, 8, or 16.

The vector registers are internally divided into four banks. Each bank is a 2K static RAM with three ports. The banks are 64 bits wide and 256 words deep. The access time, including the bank selector delay, is less than 14 ns. when the chip is clocked at 70 MHz.

The bank selectors use tristate drivers. Therefore, the bank selectors require only 25% of the die area that ordinary AND-NOR gates require.
- The load/store pipeline can output addresses before it needs to use them. It can output up to four addresses.
- Two hardware memory interface modes exist: pipeline and basic. Only vector load and store operations use pipeline mode. Vector scatter/gather operations use basic mode. A basic mode access takes two clock cycles. A pipeline mode access takes a single cycle.

- The address unit has three modes: Real, Segment, and Page.
- The segment mode has three possible segment sizes: 256 kB, 1 MB, and 4 MB.
- In page mode, the page size is 4 kB. Page mode was designed to work with a future version of GMicro, a microprocessor used in Japan's TRON project. Designers using other microprocessors may not find page mode useful. The µVP does not generate page faults.
The ADD pipeline shares a single vector register interface with the Graphics pipeline. Therefore, both pipelines cannot operate at the same time.

The ADD pipeline executes the macro instructions (Vector Search Maximum/Minimum Index, Vector Sum). Thus, it needs the feedback loop and temporary registers pictured above.

The multiply and divide pipelines are not shown.

- The multiply pipeline first stage contains a 54 byte by 54 byte multiplier tree and a Booth's decoder that produces a double precision result each clock. The second stage contains a 108 byte final partial product adder, a normalizer, and a rounding circuit.

- The divide pipeline contains two divider units operating simultaneously. Each divider is implemented using iterative and high radix nonrestoring division.

Software
- VAST from Pacific-Sierra
- Compilers
 - Portland Group (SPARC with µVP)
 - Green Hills Software (GMicro with µVP)
 - SEG & BLAS Libraries from SofTek in Japan

- Fujitsu has an assembler and a simulator available.
- It is not yet final. However, I believe Local Knowledge will provide SofTek's µVP support outside Japan.
Customers

- MPP Systems
 64 bit floating point
 Simulation Applications

- Accelerators
 32 bit Floating Point
 Signal Processing and Graphics

- Single Board Computers

- Workstations and PCs

Fujitsu

- The μVP Series is a "horse" more than one massively parallel vendor is riding in the "Teraflop Race".

- Intel's i860 currently dominates the other markets that the μVP Series is targeted at. However, many existing i860 customers are convinced that Intel will not design new members of the i860 family. Therefore, the μVP Series is getting significant attention from Intel's existing customers.

Schedule

- 50 MHz samples were shipped in mid-June to design wins in both the U.S. and Japan.
- Fujitsu expects production 33 MHz parts in September and 50 MHz parts in December.
- Fujitsu has not yet announced a schedule for 70 MHz parts.

Fujitsu

- For more information on μVP products, please contact me.

 Richard E. Jensen
 Manager, Strategic Product Development
 Technology Planning, Cooperative Ventures Division
 Fujitsu Microelectronics, Incorporated
 77 Rio Robles
 San Jose, CA 95134-1807
 Telephone +1 408 456 1206, Facsimile +1 408 432 9070
 Internet rich@fmlapd.fal.com

- The μVP product manager speaks excellent English. Members of the press may contact him in Japan:

 Makoto Awaga
 Strategic Marketing Supervisor, Microcomputer Development Department
 MOS Division, Semiconductor Group
 Fujitsu Limited
 1015, Kamikodanaka Nakahara-ku
 Kawasaki 211, Japan
 Telephone +81 044 777 1111, Facsimile +81 044 754 3575
 Internet awaga@gmd.ed.fujitsu.co.jp