MasPar MP-2 PE Chip: A Totally Cool Hot Chip

Won Kim, VLSI Architect and Designer
Russ Tuck, Systems Architect

MasPar Computer Corporation
749 N. Mary Ave., Sunnyvale, CA 94086
(408) 736-3300, FAX: (408) 736-9560
e-mail: tuck@maspar.com

Outline

- Goal
- Strategy: Replication
- Design
- System Performance
- Why Custom? Why not COTS?
- Future Directions
Goal:

Affordable Solutions for Data Intensive Problems

- High Delivered Performance
- Large Problems
- Affordable: roughly $100k to $1M

Strategy: Replication

- Data Parallel
 - Programmable
 - Efficiently Use 1000s of Processors
- Synchronous
 - Reduces Communication Latency
 - Improves Communication Efficiency
 - Simplifies Communication Interfaces
- Balanced & Scalable
 - Communication Bandwidth & Latency
 - Memory Bandwidth
Replication: 32 PEs per Chip

The World's First
32 x 32 Processor

MasPar MP-2 PE Chip: A Totally Cool Hot Chip
Hot Chips V, August 8-10, 1993 Slide 5

Replication: 32 Chips per Board

1024 PEs per Board

MasPar MP-2 PE Chip: A Totally Cool Hot Chip
Hot Chips V, August 8-10, 1993 Slide 6
Replication: 16 Boards per System

16K PEs per System

Design

- Design leverage from replication
- Glueless interfaces
- Area and power efficient
- Optimized system performance
PE "Slice" Design Leverage

- Design 1 PE
 - Only 3% of chip area
 - Optimize logic design
 - Hand-craft layout
- Replicate PE 32 times
- Rest of Chip
 - Shared Control
 - External Interface
 - About as many transistors as 1 PE

MasPar

MasPar MP-2 PE Chip: A Totally Cool Hot Chip
Hot Chips V, August 8-10, 1993 Slide 9

PE Block Diagram

MasPar MP-2 PE Chip: A Totally Cool Hot Chip
Hot Chips V, August 8-10, 1993 Slide 10

MasPar
PE: 32-bit Data Path

- 64 32-bit Registers
 - Special access modes support FP instructions
 - Some reserved for system use
- 32-bit ALU
- 32-bit Barrel Shifter
 - Built from power-of-2 shifters
 - Smaller and faster than "selection" shifters
 - Independently decodes shift amount in each PE

PE: 32-bit Data Path

- 64-bit IEEE Fraction Unit
 - Handles rounding and exception detection
 - Controls barrel shifter for renormalization
- 16-bit IEEE Exponent Unit
 - Controls barrel shifter for denormalization
- 1-bit Logic and Flag Units

MasPar MP-2 PE Chip: A Totally Cool Hot Chip
Hot Chips V, August 8-10, 1993 Slide 11

MasPar MP-2 PE Chip: A Totally Cool Hot Chip
Hot Chips V, August 8-10, 1993 Slide 12
PE: Interfaces

Memory

- Special Interface Registers
 - Address
 - Data
- Each PE can address its memory independently
- PEs can continue calculations during memory access
 - Array controller checks register dependencies automatically

PE: Interfaces

Communication

- Global Router
 - 16 PEs share 1 connection to external router
 - Inbound and outbound bit-serial ports
 - Arbitration and decoding logic independently select which PE uses inbound and outbound router port
 - Circuit Switched
PE: Interfaces

Communication (Cont.)

- Nearest-Neighbor
 - Inbound and outbound bit-serial ports
 - Choice of neighbor controlled globally
 - Synchronous system
 - low protocol overhead: 1 bit ("data valid")
- Broadcast
 - Copies 1 scalar value to all PEs
- Reduction
 - Global OR combines parallel data into scalar result

PE Cluster Memory Interface

Memory bandwidth is key to delivering high performance on large problems.

- Efficient DRAM use
 - Can use every pin of every DRAM, all the time
 - Uses widest commodity DRAMS (x8)
 - Uses on-chip parallelism to automatically pipeline memory accesses
- Small, replicatable memory system
 - Each PE chip requires only 6 DRAMs + no glue logic
 - 16 PEs share 3 DRAMs that provide 16-bit data + ECC
Circuit Design

Putting 32 PEs on one chip with a modest clock speed allows the use of circuit design methods that save area and power. This enables the replication strategy.

- Minimum device sizes everywhere except critical paths
- Flow-through logic computes a lot in one cycle
 - Avoids adding pipeline registers: saves power and area

Circuit Design (cont.)

- Decode and control done at chip edge, not in each PE
- Clocking: short phase 1 and long phase 2
 - time savings of 1-phase clock
 - simplicity of 2-phase clock
- Zero-detection in floating-point circuitry uses partial ripple carry with tree combining: saves space and power
Chip Statistics

- 950,000 Transistors
- 1.0μ two-level metal CMOS, 5.0 V
 - commodity process for affordable replication
- 64 Kbit SRAM register file
 - 20% of area
 - 50% of transistors
- 550mil x 550mil die size

Chip Statistics (cont.)

- 0.8 W -- low power:
 - simple air cooling
 - inexpensive plastic package
- 208 pin PQFP (plastic quad flat pack)
- 80 ns
 - modest clock rate saves power and area
Performance

<table>
<thead>
<tr>
<th></th>
<th>Chip</th>
<th>System</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory Bandwidth</td>
<td>45. MB/s*</td>
<td>23. GB/s</td>
</tr>
<tr>
<td>Nearest-Neighbor Bandwidth</td>
<td>45. MB/s</td>
<td>23. GB/s</td>
</tr>
<tr>
<td>Global Router Bandwidth</td>
<td>2.7 MB/s</td>
<td>1.3 GB/s</td>
</tr>
<tr>
<td>32-bit Integer</td>
<td>133. MOPS</td>
<td>68. GOPS</td>
</tr>
<tr>
<td>32-bit Floating Point</td>
<td>12.3 MFLOPS</td>
<td>6.3 GFLOPS</td>
</tr>
<tr>
<td>64-bit Floating Point</td>
<td>4.6 MFLOPS</td>
<td>2.4 GFLOPS</td>
</tr>
</tbody>
</table>

Linpack (64-bit) 1.6 GFLOPS

Memory bandwidth achieved with only 6 DRAMs per PE chip
NAS Application Benchmarks

Performance/Price vs. 1 Cray Y/MP

MasPar MP-2 PE Chip: A Totally Cool Hot Chip
Hot Chips V, August 8-10, 1993 Slide 24
Why Custom? Why not COTS?

Philosophy:

- Leverage commodity parts when suitable
 - E.g., DRAM
- Use custom parts when give compelling advantage
 - E.g., PE Chip
 - communication latency & bandwidth
 - memory bandwidth
 - integration (glueless interfaces)
 - cost

* COTS = commodity off-the-shelf

Future Directions

- More powerful processors
 - Borrow ideas from single-processor chips
- More processors
 - Already demonstrated scalability in hardware, architecture, and software

What other computer technology enjoys two such clear paths to continued performance growth?