A Family of MPEG Video Encoder and Decoder Chips

optimized for consumer applications

Martin Bolton
SGS-Thomson Microelectronics
Grenoble, France

Summary

- Design Strategy: Architecture, Hardware/Software Partitioning
- MPEG Video Overview
- The generic architecture
- MPEG1/H.261 decoders
- MPEG1 encoder
- MPEG2 decoder for TV applications
Design Strategy

- **Architecture**
 - goal is to minimize area and power consumption by:
 - keeping clock frequencies as low as possible
 - distributing control, only clocking operators when necessary
 - constraining programmability to the needs of a single application

- **Technology**
 - ASIC methodology: standard cells and application-specific macrocells
 - Synthesis used where advantageous
 - CMOS 0.7 micron technology, direct migration path to 0.5 micron/3.3V

- **Hardware/Software Partitioning Criteria**
 - on chip:
 - high computation rate (high-rate operations)
 - limited flexibility (fixed by standard)
 - real-time constraints
 - in standard microcontroller:
 - low computation power (low-rate operations)
 - high flexibility (application-dependent)
 - lower real-time constraints

Hardware/Software Partitioning

MPEG hierarchy

- Sequence
- Group of Pictures
- Picture
- Slice/Squence of Macroblocks
- Macroblock
- Block

Software

Hardware
Generic Architecture

MPEG/H.261 Video Decoders

Main Features

- Real-time decoding for MPEG1 SIF and H.261 ("p X 64")
 SIF: 352 X 240 @ 29.97 Hz, 352 X 288 @ 30 Hz
 H.261 CIF: 352 X 288 @ 29.97 Hz
- Die size 72 sq mm (no DCT), 86 sq mm (with DCT)
- Power consumption 0.25 W, max ext clock freq 48/50 MHz, 144-pin PQFP package
- Single external memory (DRAM) holds picture buffers and bit buffer
- Low demand on controlling micro (5% of standard 16-bit micro)
Decoder System Block Diagram

256K X 16 DRAM
DCT
Decoder

Video Timing Generator
D-A converters

Syncs
RGB

Display Interface

Storage medium or communications interface
Microprocessor

Host Bus

MPEG1 Decoder Die Photograph
MPEG/H.261 Video Encoder

Main Features

- Real-time decoding for MPEG1 SIF and H.261 ("p X 64")

 SIF: 352 X 240 @ 29.97 Hz, 352 X 288 @ 30 Hz
 H.261 CIF: 352 X 288 @ 29.97 Hz

- Designed to support range of encoder applications, from minimum cost to highest quality

- "Two-pass" encoding possible

- Bit-rate control system gives many user options

- Single external memory (DRAM) holds picture buffers and bit buffer

The Encoding Process

[Diagram of the encoding process with various blocks and arrows indicating the flow of data.]
Bit Rate Control Principle

Bit Rate Control Loop

\[e = \text{bit error} \]

NMU = N-macroblock unit

Quantizer = \(k \times e \)
MPEG2 Video Decoder

- Architecture is a scaled version of the MPEG1 decoder
 Memory bus extended from 16 bits to 64
 External clock 55 MHz

- Real-time decompression of CCIR 601 (720 X 480/576) interlaced pictures

- Power consumption < 1 W, 144-pin PQFP package

Additional Features

- Field- or frame-based prediction
- On-screen display
- Horizontal interpolation for format conversion
- Error concealment

MPEG2 Handles Interlaced Pictures

- Second field can be predicted from first
- A DCT performed on blocks from one field can often give lower high frequency components than a DCT performed on blocks containing data from both fields.
MPEG2 Decoder Die Photograph