PowerPC™ 601 Microprocessor

Keith Diefendorff
Microprocessor Architect
Motorola RISC Microprocessor Division, Austin, Tx.
• PowerPC Architecture changes made to:
 - Simplify implementations
 - Support increased clock rates
 - Support more aggressive superscalar designs
 - Extend the architecture to 64-bits
 - Improve multiprocessor support
 - Clean up architectural model

• POWER Architecture compatible (old binaries run).
 - Trap and software emulate missing POWER features.
POWER and PowerPC Architecture Model

- RISC instruction set architecture
- Superscalar architectural model
- Fully interlocked pipelines
- Large linear logical address space
- Very large segmented virtual address space
- Weak storage ordering

Hot Chips, August 1993

POWER™ Architecture

- True RISC architecture
 - fixed width consistently encoded instruction format
 - register-to-register (load/store) architecture
 - simple operand addressing modes
 - simple instructions
- Compound instructions for path length reduction (update, fmul-add)
- Condition code branch model with optional condition record
- Independent fixed-point, floating-point and branch register sets
- Non-destructive three-operand address formats
- IEEE double precision floating-point
- Big-endian byte addressing
- Weak storage ordering
- User-mode cache control instructions

Hot Chips, August 1993
• Removed the MQ register (eliminated extended shifts, reworked mul & div).
• Removed some clock limiting ops.
• Removed LSCBX (complex string-op).
• Removed 3 source operand fixed-point instructions.
• Relaxed unnecessary specifications to simplify implementations.
• Added unsigned integer multiply and divide.
• Added a fixed-point subtract w/o carry and a byte sign extend.
• Added single-precision floating-point and convert-to-integer.
• Added static branch prediction
• Simplified the real-time clock definition
• Improved cache control operations.
• Defined the cache consistency model.
• Defined weakly ordered storage model and synchronization primitives
• Added multiprocessor storage locking instructions.
• Added little-endian addressing mode switch.
• Extended architecture to full 64-bits (with 32-bit compatibility).
PowerPC 601 Objectives

- Quick time-to-market
 - Early PowerPC software development
 - Accelerate PowerPC system availability

- Provide POWER -> PowerPC architecture bridge
 - Superset architecture - both POWER and PowerPC features
 - Run existing POWER (RS6000) binaries at full speed
 - Provide platforms for PowerPC software development
 - Allow time for compiler reoptimization to PowerPC architecture

- Provide competitive performance at a low cost point
 - Enable early development of high-volume platforms
 - 32-bit subset of the full 64-bit PowerPC Architecture

- Provide multiprocessor features not present in current RS/6000 chipsets

PowerPC 601 Block Diagram

Instruction queue and superscalar, out-of-order dispatch logic.

Independent branch execution unit.

Independent integer execution unit.

Independent floating-point execution unit.

Memory Management Unit translates logical to virtual to physical addresses.

Large unified on-chip primary cache

Read and write queues with 88110 multiprocessor bus
Instruction Dispatch and Pipelines

Instruction Queue
- 8-deep queue with 8-wide fetch
- Superscalar dispatch of 3 IPC (br, int, flt)
- Out-of-order dispatch to branch and float

Branch Unit
- Dedicated branch address registers
- Register renaming on link register
- Condition register lookahead
- Static branch prediction
- Branch folding, zero-cycle branches

Integer Unit
- 32-entry, 32-bit wide register file
- 4-stage (F,D,X,W) pipeline (5-stage ld/st)
- Full data forwarding
- Precise exceptions

Floating-Point Unit
- 32-entry double-precision register file
- IEEE-754 Single and Double float with all values and rounding modes in hardware
- Single rounding error on multiply-add
- 4-cycle latency, single cycle throughput (5/2 on dp multiply and multiply-add)

Hot Chips, August 1993

Address Translation

16 Segment Registers

32-bit Logical Address

52-bit Virtual Address

32-bit Physical Address

Hot Chips, August 1993
Memory Management Unit

16 Segment-registers
- Selected by 4 bits of logical addr.
- Produce 52-bit virtual address

Main TLB
- 256-entry, 2-way set-associative
- LRU replacement
- 4KB page size
- Supervisor/User, R/W protection
- Cache control
- Hardware refill from memory based hashed page tables

Block TLB
- 4 variable size blocks, 128K-8MB
- Fully associative
- Supervisor/User, R/W protection
- Cache Control

Instruction TLB
- Separate path for instr. addresses
- 4-entry, fully associative
- LRU replacement
- Always a subset of Main or Block

Cache

- 32K Byte, 8-way set-associative, combined I/D cache
- 64-byte line size, 2 sectors/line
- Physically indexed, physically tagged
- Copyback write policy, writethrough available per page.
- 8-word transfers to the instruction and write queues
- Non-blocking for cache reloads
- Access in parallel with address translation
- Arbitration logic prioritizes access to the cache
- Dynamic reload of next sector in line when idle
- Coherency via 4-state MESI with separate snoop port
- User mode cache control instructions
Memory Queues and Bus Interface

Address from Cache

Read Queue

Write Queue

Data from Cache

Address to Bus Interface

Data to Bus Interface

Memory Unit
- 2-deep read queue and 3-deep write queue
- Dynamic reordering of reads and writes
- Each write queue entry holds 1 cache sector
- One write queue entry for snoop copybacks
- Write-queue snooped for coherency
- Load & store instructions are "complete" for purposes of execution after translation and before entry onto the queues

Bus Interface Unit
- Adapted from Motorola MC88110
- Independent address and data busses.
- 64-bit data bus
- Burst-mode line fills & copybacks
- Pipelined addresses
- Split transactions
- Critical word forwarding
- Cache coherency maintained by snooping

Hot Chips, August 1993

PowerPC 601 Physical Characteristics

- 0.6µm CMOS Technology
- 4 levels of metal
- 10.95mm x 10.95mm die
- 2.8 million transistors
- 3.6 volts
- 50 and 66MHz
- 9 Watts @ 50MHz
- TTL or CMOS levels compatible
- C4 in 304 pin QFP, 184 signal pins

- 60 SPECint92, 80 SPECflt92 (estimated @ 66MHz)