A 100 Kbit/s Single Chip
Modular Exponentiation Processor

Holger Orup
Computer Science Department
Aarhus University
DK-8000 Aarhus C, Denmark

in cooperation with

Outline of Talk

- Why modular exponentials?
- Parallel exponentiation algorithm.
- High-radix modular multiplication algorithm.
- Architecture.
- Redundant carry save representation.
- Test and performance.
- Future work.
- Summary.
Why Modular Exponentials?

- Public-key crypto systems. (RSA, ...).
- Primality test, key generation.

- Requirements for this implementation:
 64 Kbit/s transmission rate (ISDN).
 561 bit operands.

Modular Exponentiation Algorithm

Stimulus: \(E, M, N \), where \(E \geq 0 \) and \(0 \leq M < N \),
\(E = e_{n-1}e_{n-2}...e_0 \). Binary encoded.

Response: \(X = M^E \mod N \).

Method:
\[
\begin{align*}
X &:= 1; \ Y := M; \\
\text{for } i &:= 0 \text{ to } n - 1 \text{ do} \\
\quad \text{if } e_i = 1 \text{ then } X &:= (X \cdot Y) \mod N; \\
\quad Y &:= (Y \cdot Y) \mod N; \\
\text{end;}
\end{align*}
\]

\[
Time[Exp](n) = \begin{cases} 1.5n \cdot Time[Mult](n) & \text{average} \\ 2n \cdot Time[Mult](n) & \text{worst} \end{cases}
\]
Faster Exponentiation

- Previous approaches:
 Reducing the number of modular multiplications.
 Addition chains. High radix encoding of exponent.
 \(Time[Exp](n) > n \cdot Time[Mod](n) \).

- This approach:
 Reducing the time by performing
 two modular multiplications in parallel:

  ```
  for i := 0 to n - 1 do in parallel
    \# if \( e_i = 1 \) then \( X := (X \cdot Y) \mod N \);
    \# \( Y := (Y \cdot Y) \mod N \);
  end;
  
  Time[Exp](n) = n \cdot Time[Mod](n).
  ```

Radix 32 Modular Multiplication

- Increasing the speed by reducing the number of cycles in
 a serial-parallel multiplication scheme.

 Stimulus: \(A, B, N \), where \(0 \leq A, B < 2N \).

 \(A = a_{n'-1}a_{n'-2} \cdots a_1a_0 \). Radix 32, \(n' = \frac{n}{5} \).

 Response: \(S \equiv AB \mod N \), where \(0 \leq S < 2N \).

 Method: \(S := 0 \);

  ```
  for i := n' - 1 downto 0 do
    q := \text{Estimate}(S \div N);
    S := 2^5S + a_iB - 2^5qN;
  end;
  ```

- \(S \) has the dual role of a partial remainder and partial product.
- \(Time[Mod](n) = \frac{n}{5} \cdot Time[Cycle] \)
Architecture for Calculating $S' := 2^5S + a_iB - 2^5qN$

\[\begin{align*}
\text{quotient estimate} & \quad (-qN)_s \quad (-qN)_c \\
\oplus & \quad (a_iB)_s \quad (a_iB)_c \\
\oplus & \quad (a_iB) \\
\oplus & \quad S'_c \\
\end{align*} \]

... Architecture

- Multiples $-qN$ and aB in redundant carry save representation.
- Accumulator S in redundant carry save representation.
- Quotient estimation by inspecting 12 most significant bits of S and N.
- Carry completion adder converts redundant carry save representation to non-redundant binary representation (not shown).
- Critical Path: Quotient estimate + generation of multiple + two carry save additions.
Algorithmic Improvements

- Parallel exponentiation:
 \[n \cdot Time[^{\text{Mult}}](n) \text{ vs. } 2n \cdot Time[^{\text{Mult}}](n) \]
 The architecture is pipelined for simultaneously performing two multiplications, \(Time[^{\text{Cycle}}] = 2 \cdot Time[^{\text{Clock}}] \).

- Radix 32 multiplication:
 \[\frac{n}{5} \cdot Time[^{\text{Cycle}}] \text{ vs. } n \cdot Time[^{\text{Cycle}}] \].

- Redundant representation of intermediate operands:
The addition time is independent of \(n \).

Test and Performance

- ES2, 1.2 \(\mu \)m double metal layer CMOS.
- 304,000 transistors, 210 mm\(^2\).
- Yield 8%.
- Functionally correct, 25 MHz clocking frequency.
- Power 2.5 W at 25 MHz.
- \(Time[^{\text{Exp}}](561) = 561 \cdot \frac{561}{5} \cdot 2 \cdot 40 \text{ ns} = 5.0 \text{ ms.} \)
 Actual time is less than 5.5 ms, corresponding to a throughput of more than 100 Kbit/s.
Future Work

- Increasing the radix without increasing the multiplication cycle time.
- Montgomery's modular multiplication algorithm.
- It is possible to make the complexity of quotient determination independent of the choice of radix.
- The multiplication cycle time can be reduced to the delay of a 4-2 adder.
Summary

- Increased speed obtained by algorithmic improvements.
- Parallel exponentiation algorithm.
- Radix 32 modular multiplication algorithm.
- Intermediate operands in redundant carry save representation.
- Further improvements are possible.