UAI2110: A Universal GaAs ATM Interface Chip for High Speed Networks

Hotchips VI August 1994

Premysl Vaclavik
p.vaclavik@ieee.org

Thomas NEUROTH GmbH, Hietzinger Hauptstrasse 22
A-1130 Wien, Austria

Overview

- Motivation and background
- UAI2110 system features
- UAI2110 architecture, transmitter, receiver
- GaAs implementation, chip statistics
- Target applications
Motivation and background

- Universal interface chip which can support several line codes and word widths
- STM and ATM support
- Low complexity, low power consumption, low cost
- Chip should be used in PC environment (plug-in card) or another modular system
- Flexible configuration for different operating modes
- Built-in loop-back capability for diagnostic purposes
- Simple interface to external control unit

Features:

- Universal high speed serial interface for serial to parallel and parallel to serial conversion (SPPS)
- Physical line interface for SONET, SDH - STM1 (A) and STM4 (B), PDH -140Mbps (A) and -565Mbps(B), 100Mbps ATM UNI, FDDI, Ethernet 100Mbps and many proprietary transmission standards.
- Supports line codes like NRZ, NRZI, CMI, MCMI, Manchester, 4B5B, 8B10B, 16B20B, and other proprietary codes
- Configurable word width; 8bit, 10bit, 12bit, 16bit, 20bit
- Two versions: fmax = 320MHz (A) and fmax = 640MHz (B)
Features (continued)

- TTL and differential positive ECL (PECL) compatible signal IOs
- Supports word and frame synchronization
- External clock recovery and synthesis
- Supports optical driver and receiver modules for fiber optic cable interfaces
- Supports category 5 UTP or STP cables
- 3 loop-back capabilities for internal and external tests
- Fully software configurable
- Low power consumption

ASiCs of Vienna

Hot Chips VI 1994

Thomas NEUROTH GesmbH
Transmitter

- 10-bit input data bus

- Transmitter system clock generation for external data unit allows to control conversion to appropriate PDH or STM frame.
- Transmitter word and double word clock generation synchronizes proper data load into internal shifter.
- Clock period depends on a transmitted word width (8b,10b,16b,20b) and is configurable through data bus
- Synchronization between system clock and word clock is controlled through a dedicated pin
- Appropriate coding of transmitted words is provided by external controller
- 10-bit output data bus can be used to observe transmitted words in a loop-back mode

Receiver

- 20-bit internal data bus

- Receiver system clock generation for external data unit allows to control proper conversion from PDH or STM frame.
- Receiver word and double word clock generation synchronizes proper data load into internal 10bit output register. Clock period depends on a received word width (8b,10b,16b,20b) and is configurable through data bus
- Synchronization between system clock and word clock is controlled through a dedicated pin
- Word and double word clock is synchronized by the frame word detected signal
- Frame word synchronization can be disabled

ASICs of Vienna

Hot Chips VI 1994

Thomas NEUROTH GesmbH
Receiver (continued)

- Full speed frame word decoding and comparison is made in two operating modes.
- Two internal 20bit registers are used for frame word comparison purposes.
- Direct and inverted modes are available.
- Two internal 20bit mask registers.
- Direct frame word comparison mode (e.g. NRZ, NRZI, 4B5B line codes).
- Line code comparison mode (e.g. CMI, MCMI, Manchester).
- All modes can be changed "on the fly".
- Appropriate decoding of received words is provided by external controller.
- Received serial data stream can go through the chip in signal loop mode.

ASICs of Vienna

Clock

- Transmitter and receiver clocks are independent in the operating mode.
- Test clock, receiver clock or transmitter clock can be used as a common clock for both transmitter and receiver during several operating and test modes.
- Minimum skew on clock for different clocking modes.

ASICs of Vienna
GaAs implementation

- Low power consumption and positive power supply was required
- .8u HGaAsII process and vcb50k standard cell library was available at Thomson CSF
- Library was ported to COMPASS v8r3.8 design tools
- VITESSE Design Kit was used for the timing calculation, design rule checking, and back annotated netlist generation
- Full custom TTL I/O cells were designed to allow positive power supply operation and to reduce power consumption
- Standard VSC3K pad ring was used
- THOMSON CSF MPW run for prototyping

Chip statistics

- .8u Thomson CSF HGaAsII DCFL Standard Cell with Full Custom TTL I/Os
- Clock rate ≥20MHz (A) 640MHz (B)
- Power supply 0, +3V, +5V
- Power consumption 1.5 - 1.7W
- LDCC132 package
- 5.54 x 3.44 (Standard VSC3K pad ring)
- 4.06 x 3.44 (Custom pad ring)
- COMPASS v8r3.8 Design System
- Design time: 12-man-weeks
- Tape out: June 93
- First prototypes: February 94 (MPW run was delayed)
- Device status: Full speed functionality under testing
Chip Layout

Target applications

- Universal network analysis instrument
 SDH - STM1 - 155.52 Mbit/s (CMI, G.703)
 STM4 - 622.08 Mbit/s (B)(NRZ,8B10B)
 (Synchronous Digital Hierarchy - Synchronous Transfer Mode - Coded Mark Inversion)
 PDH -140Mbps (A) and -565Mbps(B) (Plesiochronous Digital Hierarchy)
 ATM applications based on SDH - STM1 (Asynchronous Transfer Mode)
 FDDI (NRZI,4B5B) (Fiber Distributed Data Interface)
 Ethernet 100Mbps (Manchester II)
 Token Ring (Differential Manchester)

- Fast Ethernet terminal (100Base-2,100Base-VG,200Mbps, 300Mbps)

- Multimedia terminal
ATM application based on SDH STM1

ASICs of Vienna

Hot Chips VI 1994

Thomas NEUROTH GesmbH