A 500 MHz BiCMOS Gigabyte/Second SCI-Link Implementation

Presenter: Wayne Nation

Team: Don Baldus Richard Booth Del Cecchi
 Marius Dina Nancy Duffield William Hammond
 Russ Hoover Wayne Nation Curt Preuss
 Kenneth Valk

Coupling Technology
IBM AS/400 Division
Rochester, Minnesota

International Business Machines Corp.

Agenda

- Problem definition and background
- SCI-Link architecture overview
- SCI-Link chip description
- Chip status and applications
- Further work

International Business Machines Corp.
Introduction

• Problems:
 - Higher bandwidth at low latency needed
 - Higher I/O bandwidth to more I/O devices needed
 - Multi-drop busses are approaching physical limits

• Solution Approach:
 - Use point-to-point asynchronous interconnect
 - Build packets to produce logical multi-drop busses where needed

International Business Machines Corp.

Introduction

Background:

In 1990, the AS/400 Division established a team to evaluate and develop a high-speed interconnect
Chose IEEE P1596 SCI (Scalable Coherent Interface) as a starting point for evaluation

Reasons for selection:

- Supported high-bandwidth low-latency link
 500 Mbit/sec/bit with 16-bit data, 1 flag bit, 1 clock bit
- Scalable to moderate distance (8 meters)
- Standard
- Relatively complete

International Business Machines Corp.
Introduction

Background:
Criteria for further evaluation:
- Suitability for 500 MHz implementation in CMOS
- Fault-tolerance of link protocol
- Applicability of high-level protocols for:
 Coherent shared memory
 Message passing
 I/O subsystem

In 1993, 500 MHz portion of the link protocol was design in BiCMOS

International Business Machines Corp.
SCI-Link Architecture

Modification to SCI link protocol for data integrity:

- 32-bit CRC
 - Meet commercial system data integrity requirements
 - More suitable for use in fiber technologies
- Hardware detection/retry of lost/corrupted packets
 - Avoid software invocation on detected link errors
- Duplicate packet suppression
 - Avoid data integrity failure
- End-to-end packet acknowledgment
 - Tolerate failures in redundant topologies

International Business Machines Corp.

SCI-Link Chip Description

- Chip objective: demonstrate design feasibility of 500 MHz

- Essential portion of SCI-Link architecture implemented

- Necessary 500 MHz function included:
 - Driver/Receiver logic
 - Bit-to-bit deskew logic
 - Elastic buffer
 - Packet aligner

- Ancillary function included:
 - Random packet-data generator
 - Packet framing logic
 - Statistics counters
 - Analyzer ports
 - 32-bit CRC

International Business Machines Corp.
SCI-Link Chip Description

SCI-Link Testbed Description

- Chip:
 - Technology: 0.8 micron BiCMOS
 - Die Size: 12.7 mm x 12.7 mm
 - Voltage: 3.6 Volts
 - Package: 32 mm Ceramic SBC (BGA)
 - Chip Area: 15%
 - Watts (500 MHz logic): 3 Watts

- Card: Standard AS/400 9x11" card, 6 signal, 4 power planes

- Cable: 5 meter cable, 50-pin connector (AMP)
SCI-Link Chip Status

- Tape-out 6/93 / Power-on 1/94 / Debug complete 3/94
- Correct operation as slow as 125 MHz
- 500 MHz box-to-box (separate power and oscillators)
 - Error-free transmission of 8- to 512-byte packets on 5-meter cable
 - Functional bit-to-bit deskew
 - Functional elastic buffer
 - Passed Class A FCC EMC product-level testing

International Business Machines Corp.

SCI-Link Media Evaluation

- Testbed for 500 MHz logic, card, copper cable/connector evaluation
- Testbed for emerging parallel fiber technologies
- OETC (ARPA-funded consortium): laser parallel fiber transceivers
 - 500 Mbit/sec/signal
 - Up to 100 meters
- JITNEY (NIST-funded consortium): LED parallel fiber transceivers
 - 500 Mbit/sec/signal
 - Up to 30 meters
- SCI-Link chip is basis for a testbed
 - Sophisticated packet generator
 - Bit error rate checker

International Business Machines Corp.
Further Work

- CMOS designs underway
- Lower-cost, lower-speed designs underway
- Architectural evaluation and definition continues
 - System coupling - alleviating the multi-drop bus bottleneck
 - I/O coupling - scaling I/O subsystem connectivity and performance
- Evaluating emerging parallel fiber technologies

Conclusions

- SCI link protocol as starting point; modifications where needed
- Demonstrated 500 MHz link operation achievable in silicon
- Constructed testbed for evaluation of:
 - High-speed logic
 - Card designs
 - Connectors and cables
- Continued use of testbed for parallel fiber study
- Modifications continue to evolve
- Important enabling technology for future products