The MiniRISC™ CW4010:
A Superscalar MIPS Processor ASIC core

Paul Cobb, Bob Caulk, Joe Cesana
LSI Logic
July 1995

MiniRISC CW4010 Agenda

- Design goals & initial decisions
- MiniRISC CW4010 overview
- Instruction set & internal organization
- Configuring for specific applications
- Software development support
- Evaluation device
- Performance
MiniRISC CW4010 Design Decisions (1)

- Target markets: high-performance embedded
 - Performance goal: at least 100 native MIPS
 - Combine CW4010 CPU core with building blocks and other logic to create single-chip systems.
 - Examples: games, set-top boxes, printers, routers.
 - Meet consumer product cost constraints.

- Minimize die area & power consumption
 - Combined die area of CPU and other logic must permit designs to meet cost constraints.
 - Total power budget must suit low-cost packaging, and portable battery-powered operation.

MiniRISC CW4010 Design Decisions (2)

- Modular design, easily customized
 - Building blocks included/excluded to suit application.
 - ASIC designer selects area vs. performance tradeoff.

- On-chip interfaces for easy extension
 - On-chip logic blocks can be defined for application-specific acceleration.
 - New blocks can connect to CW4010 as coprocessors.
 - New hardware can be supported by new user-defined instructions.

- Implemented in standard cell technology
 - Must be compatible with standard ASIC design flow.
 - Designs must suit LSI Logic's ASIC process flow.
MiniRISC CW4010 Design Decisions (3)

☐ ‘Conservative’ superscalar architecture.
 ✦ Multiple issue reduces reliance on high clock rate.
 ✦ Avoidance of aggressive architectural options allows more die area for user-defined logic.

☐ Moderate pipe depth (enhanced 5-stage).
 ✦ Avoids reliance on high-accuracy branch prediction.
 ✦ Enhancements reduce branch penalty below that of basic 5-stage pipe.
 ✦ Allows use of simple prediction scheme, saving area.

MiniRISC CW4010 Overview (1)

☐ 32bit Superscalar CPU
 ✦ 2 instructions per cycle (max)

☐ 110 native MIPS @ 80 MHz (160 MIPS peak)
 ✦ On a mix of small benchmarks - Dhrystone etc.

☐ Easily customized by ASIC designer
 ✦ Modular building blocks may be used selectively
 ✦ User-defined hardware attaches to onchip interfaces

☐ Compatible with R4000 32bit mode (MIPS-II)
 ✦ 32-bit addressing and integer instructions.
 ✦ CW4010-specific instruction set enhancements - improves performance in DSP applications.
MiniRISC CW4010 Overview (2)

- Dual internal 32-bit paths
 - 64-bit on-chip bus interface.
 - 2 x 32-bit instruction fetch and decode.
 - 2 x 32-bit I-cache and memory interface.
 - Upgrade to 64-bit paths in future version.

- 5-plus-1 Pipeline Architecture:
 - Q Stage, prediction for branches
 - Single Load Delay slot
 - Single Clock Edge design

MiniRISC CW4010 Overview (3)

- Power Management Features
 - Fully static design; gated clocks.
 - Wait for interrupt instruction.
 - Estimated core power consumption: 5mW/MHz.

- Full scan support included in core design
 - Simplifies device and board production test.
 - Supports ICE-like debug capability.
MiniRISC CW4010 Instruction Set

- Implements full MIPS-II instruction set
- Additional instructions
 - ffs, ffc: Find First Set Bit.
 - FP emulation and bit tests.
 - selsr, selsl: Select and shift.
 - Graphics alignment and bit field selection.
 - addciu: Add circular Immediate.
 - Circular Buffer addressing.
 - madd, msub: Multiply/Accumulate and Multiply/subtract.
 - DSP and graphics calculations.
 - waiti: Wait for Interrupt.
 - Power management feature.

MiniRISC CW4010 Internal Organization

- 4010 core contains basic Integer Unit
- 4010 shell contains optional blocks, memories
MiniRISC CW4010 Pipeline (1)

Basic 2-way superscalar machine
- Max. 2 fetches/decodes/issues/execs/writes per clock.

To issue a pair of instructions without stalling:
- Both instructions must use different execution units.
- Second instruction may not use result of first.
- Neither instruction may use result of any previously issued operation which is still incomplete.
- Special case: two adds or load-immediates can issue.
- Instructions stall at RD stage unless/until issued.

Execution behavior
- ALU instructions execute in-order, single cycle.
- Mul/Div instructions execute concurrently with ALU.
- Loads block only if target register used during latency.
MiniRISC CW4010 modular building blocks

- ICache/DCache Configuration
 - Direct Map / 2-way Set Associative
 - Options: 0, 1, 2, 4, or 8 K Bytes per set
- Write-back buffer
 - Removable for WriteThrough Cache Configuration
- MMU
 - Removable for non-MMU system
 - Selectable TLB Configuration (Size, Mask, etc)
- Multiplier
 - Options: None / Small / Fast with accumulate
 - Support Multiply/Add Instruction as an option

MiniRISC CW4010 MMU

- Memory Management Unit similar to R4000.
- Up to 64 single entry pages instead of 48 dual entry pages.
 - Eases MMU h/w design; simplifies memory mapping.
- Two page sizes (4K, 16M) instead of six.
- Write thru/write-back/none selectable per page.
- MMU may be removed if not required.
 - If omitted, single config bit sets write mode globally.
MiniRISC CW4010 Instruction Cache

- ICache 2KBytes to 16KBytes options (8K/set).
- Direct mapped or 2-way set associative.
- Block refill requests miss word first.
- Linear ordering; wraparound at end of block.
- Instruction Streaming.

MiniRISC CW4010 Data Cache

- DCache 0Kbytes to 16KBytes options (8K/set).
- Direct mapped or 2-way set associative.
- Early release of Data Cache.
- Single Load Miss does not stall CPU.
- Store hit under Load Miss.
MiniRISC CW4010 Interfaces

- On-chip bus Interface
 - Address[31:0]; Data[63:0]; ByteEnable[7:0]; Controls

- Coprocessor Interface
 - InstructionBus[31:0]; DataIn/Out[31:0]; Controls

- Cache Invalidation Interface
 - AddressInputs[31:5]; Invalidation Strobe
 - Allows connection of bus-snooping logic

MiniRISC CW4010 On-chip bus

- Basic transaction: 64b width, single clock cycle
 - Full CPU data rate available for onchip peripherals.
 - Off chip bus(es) may sacrifice speed, width.
 - One dead cycle inserted for any bus turnaround.

- Single (1, 2, 3, 4, 8 bytes) or Burst (8 words)
 - System can force idle cycles between transactions, or to break up bursts.

- Other features:
 - Bus Retry, Bus Error.
 - Atomic transactions (bus lock) for semaphores.
 - Dynamic sizing to 32bit.
 - In-page write signal for DRAM support.
MiniRISC CW4010 Development Support

- Uses standard or enhanced software tools
 - MIPS tools are available from many vendors.
 - Tools optimized for CW4010 in development.

- HDL Simulation and Verification Environment
 - Includes HDL model, timing shell, synthesis shell.
 - Ready-made framework for ASIC designs.
 - User defined blocks connect to this working nucleus.

- ICE-like debug tools
 - Use CW4010's internal scan chain.
 - Full control & observability of deeply embedded core.
 - Initial bringup of new device in system.
 - Hardware/Software integration, system level debug.

MiniRISC CW4010 Evaluation Chip

Implemented in 0.5 um; 80MHz
MiniRISC CW4010 Performance

- Estimated performance
 - ~110 native MIPS sustained, on general purpose integer code.
 - 5mW/MHz core power consumption.

- With standard MIPS C software tools:
 - Average around 1.3 instructions per clock (over a group of small synthetic benchmarks).
 - 1.3 times R3000 / 33300 / 4200 at same clock rate.
 - 1.7 times R4400 at same clock rate.

- With CW4010-optimized C software tools:
 - Average 1.4 to 1.8 instructions per clock.