Optimizing the P6 Pipeline

David Papworth
Intel Corp.

Stanford, CA
August 14, 1995

Agenda

- P6 Overview
- The development process
- CPI/frequency/complexity tradeoffs
- Results and conclusions
Technology profile

- 32-bit Intel Architecture processor
- Dynamic Execution microarchitecture
 Speculative and Out-of-order Execution
 Micro-dataflow
 Superscalar
 Superpipelined
- 8K/8KB non-blocking L1 caches
- 256KB integrated non-blocking L2 cache

Implementation: Microarchitecture

- In-Order Front End
- Out-of-order Core
- In-Order Retire
Implementation: Pipeline

- In-Order Front End
- Out-of-order Core
- In-order Retirement

Typical goals for a major new CPU
(Relative to older design on same process)

- Achieve 1.5x to 2.0x the performance
- Run at about the same clock rate
- Use as many transistors as will fit
- Adopt new bus/cache/packaging to match higher core performance and add new capability (MP)
The P6 we first imagined...

- 100 MHZ on 0.6 micron technology
- 10 stage pipeline
- 4-2-2-2 decoder template
- 4 uop per clock rename and retire
- 32KB caches
- 2 LD/ST ports
- 10 Million transistors

The P6 we actually built

- 150 MHZ on 0.6 micron technology
- 14 stage pipeline
- 4-1-1 decode template
- 3 uop per clock rename and retire
- 8KB caches
- 1 Load port, 1 Store port
- 5.5 million transistors
The evolution process

- Dynamic execution was required for higher performance
- Designed and simulated a high-performance, fully general scheduling and execution engine
- Circuit studies showed decode and cache access main frequency limiters
- O-O-O engine and ALUs capable of running faster

Performance analysis

- "Microarchitect's workbench" simulator written
- Every change simulated against at least 2 billion instructions from more than 200 programs
- Sensitivity analysis done on cache size, pipe depth, decoder width, rename width, RS and ROB depth
- Our first intuition was often proved wrong
- The microarchitecture was tuned to what was proven to deliver performance
Optimizing CPI and Frequency

- Reduced gates per pipestage by 1/3
 - 50% frequency gain
- Add 1 stage to data cache lookup
 - 7% CPI loss
- Add stages to front end
 - 3% CPI loss
- Add miscellaneous simplifications
 - 3% CPI loss
- Net result
 - 37% performance gain

Performance generally improves with frequency
Must accept some CPI loss to enable higher frequency
Net result is better performance (within limits)
Why is the graph this shape?

◆ Effective branch prediction
 – Minimizes cost of extra “front end” stages
◆ 20 entry RS buffers a large pool of uops
 – Operations available to fill deeper pipeline
 – Non-critical loads do not block critical loads
 – Frequent overlap of load latencies
◆ “Inherently single cycle” functions
 – Still buildable at 150 MHZ

Barriers to higher frequency

◆ Less margin for error in any stage
◆ Many small uarch changes must be made
◆ Requires lots of hand layout
◆ Requires careful clock and power distribution
◆ Parasitics are a bigger fraction of clock
◆ Requires diligent and protracted effort
Optimizing complexity and area

- Most apps do not “ring the bell”
- Deep buffers and flexible scheduling allow time averaging of demand
- Remove wasteful overcapacity
 - Improves clock rate and die area
 - Reduces complexity and improves correctness
- Trim until slight performance loss

Area Vs. Performance for Decoder

![Graph showing the relationship between area and performance for different decoder configurations. The graph includes points labeled 4-1-1, 4-2-2, and 4-2-2-2, with relative area on the x-axis and performance on the y-axis.](image-url)
Easy Changes

- 1 load pipe Vs. 2
 - <1% performance loss
- 4-2-2 decode template
 - Same performance as 4-2-2-2
- Rename/Retire 3 ops per clock
 - <2% loss
- 8K L1 caches
 - <2% loss with 150MHZ L2

Harder Changes

- 4-1-1 decoder
 - 3% performance loss
- 512 entry BTB
 - 5% loss on TPCB
 - 1-2% on Ispec
- These changes cost more than we liked
 - But needed to hit area and frequency targets
- Careful tuning was critical to success
Results

- **Performance:**
 - >225 Ispec 92* on 0.6 micron process @ 150MHz
- **Area**
 - 691 Mils**2
- **Frequency**
 - 133 MHZ on A-step
 - 150 MHZ on B-step
- **Functionality**
 - This presentation prepared on a 4 processor P6 system running at 150MHZ

* Estimate based on pre-production silicon and systems

Conclusions

- **P6 put balanced effort into frequency and CPI**
 - Not frequency at any cost to CPI
 - Not CPI without regard to frequency
- **Must simulate and justify every change**
 - Intuition is often wrong
 - Pay attention to circuit and layout issues
 - Tune the architecture to best performance, not best bragging rights
- **Fully general O-O-O engine was worth it**
 - Allowed higher clock frequency without CPI degradation
 - Provides more performance per square mil of datapath