A Single Chip Video CD with Hi-Fi Audio for Consumer Applications

Bryan Martin
Jan Fandrianto
Integrated Information Technology, Inc.

What is Video CD?
Standard reproduction system for combining full motion pictures together with high quality audio using the Compact Disk format
- Based on the CD Bridge format
- Video CD disc can contain more than 70 minutes of data

Video + Audio Compression employs the ISO MPEG1 Standard
- Maximum bitrate = 1,377,600 bits/sec.
- Audio is layer II, sampled at 44.1 KHz

Supported by JVC, Matsushita, Philips, & Sony
- Referred to commonly as the “White Book”
Video CD Applications

Video-CD is suitable for a wide range of Video Products
- Video-CD Players (Karaoke Machines)
- CD-I Players with Digital Video Extension
- Computers equipped with CD-ROM drives & MPEG Decoders
- Modified CD Players with a Digital Output and an Add-On Video-CD Adaptor

Video-CD 1.1 introduced in September, 1993
Video-CD 2.0 introduced in March, 1994

Video-CD 2.0 Feature Extensions

1. Add high resolution (704 x 480 or 704 x 576) still pictures for best quality stills on NTSC or PAL TVs.

2. Add new audio quality modes:
 - LOW 128 kBIT/64 kBIT (stereo mono)
 - MIDDLE 192 kBIT/96 kBIT
 - HIGH 384 kBIT/192 kBIT

3. Add new playback control modes
Multimedia Playback Processor (MPP) System

TDM: General Purpose 16 Mbit/sec. serial link

AUDIO: Bidirectional serial port designed for seamless interfacing w/ DACs + ADCs for the transfer of PCM audio data

VIDEO OUT: YUV/RGB output display of frames stored in DRAM

DRAM Iface: Connects to ordinary 70ns PAGE-Mode DRAMs

Peripheral Bus: Microprocessor code store (for standalone boot) and interface to auxiliary system slave devices.

MPP Block Diagram

- **RISC**
 - 40 MIPS 32-BIT RISC
 - On-chip Instruction ROM, Customized Code in external EPROM
 - 10 DMA channels

- **VP DSP**
 - 80 MHz SIMD machine with 128-BIT ALU, 64-bit MAC
 - Vertical pixel processing
 - On-chip microcode store (ROM/RAM)

- **Video Output**
 - On-Screen Display (OSD)
 - Decimation + Interpolation Filters for CCIR601/SIF conversion @ 60 frames/sec.
 - Temporal, block edge, + interlacing filters
 - Arbitrary image scaling for PAL/NTSC disc translation
Video Output/Post Processing

- Noise Reduction Filter

\[
\text{Pel}(i) = A\text{NewPel}(i) + (1-A)\text{Pel}(i-1),
\]

\[
\text{Pel}(i) = \text{Pel}(i-1) + A(\text{New Pel}(i) + \text{Pel}(i-1))
\]

Assume \(B = (A-1) \)

\[
\text{Pel}(i) = \text{NewPel}(i) + B(\text{NewPel}(i)-\text{Pel}(i-1))
\]

- Luma Interlacing/Chroma Interpolation

LUMA

<table>
<thead>
<tr>
<th>DMA Data</th>
<th>Data Out to Scalers Field 1</th>
<th>Data Out to Scalers Field 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line 0</td>
<td>3/4 Line0 + 1/4 Line1</td>
<td>1/4 Line0 + 3/4 Line1</td>
</tr>
<tr>
<td>Line 1</td>
<td>3/4 Line1 + 1/4 Line2</td>
<td>1/4 Line1 + 3/4 Line2</td>
</tr>
<tr>
<td>Line 2</td>
<td>3/4 Line2 + 1/4 Line3</td>
<td>1/4 Line2 + 3/4 Line3</td>
</tr>
</tbody>
</table>

CHROMA

4:2:0 Data From DRAM

- L1 Y0 Y1 Y2 Y3 Y4 ...
- CH1 U0A V1A U2A V3A U4A ...
- L2 Y0 Y1 Y2 Y3 Y4 ...
- L3 Y0 Y1 Y2 Y3 Y4 ...
- CH2 U0B V1B U2B V3B U4B ...

The interpolated chroma looks like:

- L1 Y0 Y1 Y2 Y3 Y4 ...
- CH1 U0A V1A U2A V3A U4A ...
- L2 Y0 Y1 Y2 Y3 Y4 ...
- CH2 U01 V11 U21 V31 U41 ...
- L3 Y0 Y1 Y2 Y3 Y4 ...
- CH3 U02 V12 U22 V32 U42 ...

Pixel delayed 1 frame
Video Post-Processing Components

- Horizontal Scaling

On-Screen Display

4 Modes of Operation

1. Bypass
2. 2 BITS/PIXEL - LUT for 3 colors, 1 transparent out of a palette of 8192 possible colors (5 BITS Y, 4 BITS U, 4 BITS V), 8 Blending values from 1/8 to 8/8 in LUT for each color
3. 4 BITS/PIXEL - Same as #2, except palette has 15 colors, 1 transparent
4. 8 BITS/PIXEL - 4 BITS for LUT (16 colors), 1 BIT transparency, + remaining 3 used for 1/8 to 8/8 mix value

Audio Post-Processing

- Audio Scaling - "KEY UP/KEY DOWN"
 - Use RISC Engine to process 16-BIT Decoded PCM Samples before they are sent to the DAC
RISC-Derived Special Effects

- Overcome Interval Jump with Amplitude Smoothing
 - This method is sufficient for key up/key down in the following range with 1/16 resolution:

- Programmable Reverberation
- MIC Echo
- Surround Sound

Example of Audio Scaling in C

```c
#define SCALE_PCM do {
    idx = beg >> KEY_SHIFT;
    ptmp = (short*)((long*)last_pcm_in + idx) ;
    sv  = (long)(*(ptmp)) ; lv = (long)(*(ptmp+2)) - sv;
    dvm = (sv + ((((beg & KEY_MASK) * lv) >> KEY_SHIFT)));
    sv  = (long)(*(ptmp+1)) ; lv = (long)(*(ptmp+3)) - sv;
    dvl = (sv + ((((beg & KEY_MASK) * lv) >> KEY_SHIFT)));
    if ( cp1 < FADE_RANGE ) {\n        dvm = (dvm * cp1) >> FADE_SHIFT;\n        dvl = (dvl * cp1) >> FADE_SHIFT;\n    }\n    if ( cp1 > (PCM_NUM_PER_BUFFER - FADE_RANGE )) {\n        dvm = (dvm * (PCM_NUM_PER_BUFFER - cp1)) >> FADE_SHIFT;\n        dvl = (dvl * (PCM_NUM_PER_BUFFER - cp1)) >> FADE_SHIFT;\n    }\n    CLIPP(dvm); CLIPP(dvl); \n    *pout = (dvm << 16) | (dvl & Oxffff); \n} while (0)
```
MPP Technology Overview

Technology: 0.5μm CMOS triple layer metal
Chip Size: 6.98mm x 6.98mm
Transistor Count: 0.9M
Clock Frequency: 40MHz RISC clock, 80MHz DSP + Video
Power Supply: 5V, 3.3V
Power Dissipation: < 1.5W @ 5V
Package Type: 208 PQFP
Samples: NOW
Production: NOW

Digital Video Disc (DVD) Format

- High quality video (MPEG 2 coding) (better than LD)
- Large capacity (5-10 GBytes) - 2 hour movies
- Theatre Quality Audio (multi-channel)
- Multi-function
 - Interactiveness
 - Multi-aspect

MPP functionality will support these requirements
Conclusions

- The MPP’s application requires a high degree of integration, excellent video and audio quality, low power, and low overall system cost
- Including an embedded RISC in parallel with a DSP and dedicated hardware can be cost effective
- Video post-processing in hardware
- Audio post-processing in software
- Other system functions are integrated as the RISC MIPS increase:
 - CD Block Decoder functions
 - CD Microcontrol functions
 - Bitstream error suppression/recovery