UltraSPARC™-I: A 64-bit Superscalar Processor with Multimedia Support

Marc Tremblay

Sparc Technology Business

Sun Microsystems Inc.

UltraSPARC-I Vital Statistics

<table>
<thead>
<tr>
<th>Architecture</th>
<th>64-bit SPARC-V9 with multimedia instruction extensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipeline</td>
<td>4-issue superscalar, 9 stage pipeline</td>
</tr>
<tr>
<td>Clock Freq</td>
<td>167 Mhz</td>
</tr>
<tr>
<td>Performance @ 167 Mhz, 2MB E$</td>
<td>240 SPECint92</td>
</tr>
<tr>
<td></td>
<td>350 SPECfp92</td>
</tr>
<tr>
<td>Power Supply</td>
<td>3.3v</td>
</tr>
<tr>
<td>Power @ 3.3V, 167 Mhz</td>
<td>28W*</td>
</tr>
<tr>
<td></td>
<td>20mW sleep mode</td>
</tr>
<tr>
<td>Die Size</td>
<td>17.7 mm * 17.8 mm = 315 mm²</td>
</tr>
<tr>
<td>Transistors</td>
<td>5.2 million (3.4 million logic)</td>
</tr>
<tr>
<td>Technology</td>
<td>CMOS, 4-layer metal, 0.5 μm drawn</td>
</tr>
</tbody>
</table>
Architectural Highlights

- **Goal:** Sustain an execution rate of 4 instructions/cycle at a high clock rate even in the presence of:
 - conditional branches
 - cache misses

- **Accomplished through:**
 - simple execution model
 - in-order dispatch, out-of-order completion
 - 9 functional units: 2 ALUs, 1 ld/st, 3 FPUs, 2 Graphics, 1 branch
 - single-cycle branch following mechanism
 - full throughput to the 2nd-level off-chip cache
 - non-blocking data cache
 - 9-entry load buffer
 - pipelined access to the SRAMs

Hot Chips VII August 1995

Architectural Highlights (continued)

- **Provide on-chip support for system level functions**
 - Comprehensive multi-media support
 - VIS (Visual Instruction Set)
 - Microarchitecture support for networking
 - Block load, block store: transfer 600 MBytes/s without polluting caches
 - Parallel check-summing, encryption
 - Integrated 2nd-level cache controller
 - L2 cache is formed of synchronous SRAMs
 - Flexible MP support
 - Snooping and directory-based coherence protocols
 - Interconnect supports multiple address and data buses of different widths
Block Diagram

Pipeline Diagram

Integer Pipe

Floating-point/Graphics Pipe
Prefetch and Dispatch Unit

- 16kB ICache, 2-way set associative, 32B line size w/pre-decoded bits
- Next Field RAM which contains 1k branch target addresses and 2k dynamic branch predictions.

<table>
<thead>
<tr>
<th>I0</th>
<th>I1</th>
<th>BP</th>
<th>I2</th>
<th>I3</th>
<th>BP</th>
<th>NFA</th>
</tr>
</thead>
</table>

- 4-entry Return Address Stack
- Branch prediction accuracy: 88% SPECint92 / 94% SPECint92
- 64-entry, fully associative ITLB backs up 1-entry μTLB
- 12-entry Instruction Buffer fed by ICache or second-level cache
- Single-cycle dispatch logic considers “top” 4 instructions

Floating-Point/Graphics Unit

- Floating-point/Graphics Register File has 5 read ports/3 write ports
- 32 single-precision/32 double-precision registers
- 5 functional units, all fully pipelined except for Divide/Square Root unit
- High bandwidth: 2 FGops per cycle
- Short latencies
 - FP compares: 1 cycle
 - FP add/subtract/convert: 3 cycles
 - FP multiplies: 3 cycles
 - FP divide/square root(sp/dp): 12/22 c.
 - Partitioned add/subtract, align, merge, expand, logical: 1 cycle
 - Partitioned multiply, pixel compare, pack, pixel distance: 3 cycles
Load/Store Unit

- 16 kB DCache (D$), direct-mapped, 32B line size w/16B sub-blocks
- 64-entry, fully associative DTLB supports multiple page sizes*
- D$ is non-blocking, supported by 9-entry Load Buffer
- D$ tags are dual-ported, allowing a tag check from the pipe and a line fill/snoop to occur in parallel
- Sustained throughput of 1 load per cycle from second-level cache (E$)
- Single-cycle stores to D$ and E$ via decoupled data and tag RAMs.
- Store compression dramatically reduces E$ bus utilization

External Cache Unit and System Interface

- E$ sizes from 0.5 MB to 4MB
- E$ is direct-mapped, physically indexed and tagged, w/64B line size
- 5 cache coherency states: MOESI
- Uses synchronous SRAMs with 1-entry internal write buffer
- 16B (+ parity) interface to E$ supports 2.5 GB/s sustained bandwidth.
- UDBs electrically isolate CPU/E$ from system data bus.
- Packet-based, 16B system interconnect with separate address and data busses
- Distributed arbitration w/low latency parking mode
- System is 1/2 or 1/3 CPU clock rate
- System address bus supports 4 CPU modules and system controller
- Supports snoopy and directory-based cache coherency protocols.
Multi-media Support

VIS - Data Format

- Tailored for graphics

Pixel format:

- **Color components:**
 - 31: R
 - 23: G
 - 15: B
 - 7: A

- **Pixels in a register:**
 - 63: Pixel 1
 - 0: Pixel 2

- 8-bit Red, Green, Blue components
- Alpha value for transparency coefficient
- Band-interleaved and Band-sequential supported
- Conversion instructions

VIS - Data Format (cont.)

Fixed data:

- **16-bit components:**
 - 63: 47
 - 31: 15

- **32-bit components:**
 - 63: 31

16/32-bit fixed point components

- Used for additional precision or larger dynamic range
- E.g., intermediate results during image processing
- Very high quality imaging
 - Medical processing
 - Color pre-press imaging
Arithmetic Instructions

- Core of 2D, 3D graphics and image processing
 - filtering, smoothing, alpha blending -> pixel add/mul
 - Gouraud shading -> pixel interpolation
 - scaling/rotation, DCT, convolution, warping -> pixel add/mul

- Partitioned add and subtract:
 - 4 16-bit add/sub or 2 32-bit add/sub
 - FPADD16 instruction:

![Diagram]

Arithmetic Instructions (cont.)

- Partitioned multiply
 - 4 8-bit X 16-bit multiplications
 - signed and unsigned
 - distributed and pair-wise
 - Mul8x16 instruction (pair-wise):

![Diagram]
Motion Estimation Instruction

- dominant computation in real-time video compression
- minimal changes in the position of images from one frame to the next
- search for a motion value that minimizes estimation error

 - Pdist operates on 8 pixels in parallel:
 \[|a_1-b_1| + |a_2-b_2| + |a_3-b_3| + |a_4-b_4| + |a_5-b_5| + |a_6-b_6| + |a_7-b_7| + |a_8-b_8| \]

 - 8 subtractions, 8 absolute values, 7 additions, and 1 accumulate -> 24 operations

 - also replaces numerous loads and shifts required
 - replaces ~48 instructions
 - 16x16 blocks require 32 pdist instructions
 - would typically require ~1500 conventional instructions

Code Example

- *(to be provided later)*

 - software pipelined loop
 - accesses L2 cache at full throughput
 - uses VIS to accelerate pixel processing
Summary

- 64-bit SPARC V9 CPU - binary compatibility
- 4-issue, superscalar
- 167 Mhz
- High bandwidth memory system
- Flexible multiprocessing support
- Advanced on-chip multimedia features
- High performance machine for real world applications