High Performance Caches:
The Quiet Revolution

David Chapman
Manager, Applications Engineering
FSRAM Division
Memory and Microprocessor Technology Group
Motorola Semiconductor Products Sector
Austin, Texas
Intel Processor Core Clock Frequencies

Source: Intel Microprocessor Quick Reference Guide
Processor Core Speed Trends
The Long View

Source: Intel Microprocessor Quick Reference Guide
Processor Core Speed Trends

Source: Intel Microprocessor Quick Reference Guide
Intel System Bus Speeds

Year

Bus Freq. (MHz)

Source: Intel Microprocessor Quick Reference Guide
Volume Processor Max. Bus Speed Trend

Source: Intel Microprocessor Quick Reference Guide
<table>
<thead>
<tr>
<th>Processor Bus Frequency</th>
<th>Processor Cycle Time</th>
<th>RAM Access Time Requirement</th>
</tr>
</thead>
<tbody>
<tr>
<td>MHz</td>
<td>ns</td>
<td>ns</td>
</tr>
<tr>
<td>16</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>25</td>
</tr>
<tr>
<td>25</td>
<td>40</td>
<td>20</td>
</tr>
<tr>
<td>33</td>
<td>30</td>
<td>15</td>
</tr>
<tr>
<td>40</td>
<td>25</td>
<td>12.5</td>
</tr>
<tr>
<td>50</td>
<td>20</td>
<td>10</td>
</tr>
<tr>
<td>58</td>
<td>17</td>
<td>8.5</td>
</tr>
<tr>
<td>66</td>
<td>15</td>
<td>7.5</td>
</tr>
<tr>
<td>83</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>125</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>142</td>
<td>7</td>
<td>3.5</td>
</tr>
<tr>
<td>166</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>200</td>
<td>5</td>
<td>2.5</td>
</tr>
<tr>
<td>250</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>333</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>285</td>
<td>3.5</td>
<td>1.75</td>
</tr>
<tr>
<td>333</td>
<td>3</td>
<td>1.5</td>
</tr>
<tr>
<td>400</td>
<td>2.5</td>
<td>1.25</td>
</tr>
<tr>
<td>500</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>666</td>
<td>1.5</td>
<td>0.75</td>
</tr>
</tbody>
</table>
Cache SRAM Breakthroughs

- 300 MHz Barrier
 Echo Clock Conversion

- 150 MHz Barrier
 BGA Conversion

- 100 MHz Barrier
 Revo Conversion

- 50 MHz Barrier
 Sync Conversion

- Revolutionary Pinout
 Double Data FSRAM
 (Burst + Late Write)

- Revolutionary Pinout
 Burst Sync FSRAM

- Evolutionary Pinout
 Async FSRAM

- Evolutionary Pinout
 Burst Sync FSRAM

- Evolutionary Pinout
 Async FSRAM
Evolutionary
Pinout and Architecture
FSRAM

Revolutionary
Pinout and Architecture
FSRAM

Note: Drawings not to scale
Asynchronous Read-Write Sequence

Address

Select

Write

Data
Evolutionary
Pinout and Architecture
 Pipelined Burst SRAM

x16 PLCC

x32 TQFP

Note: Drawings not to scale
Pipelined Burst Synchronous Read-Write-Read Sequence

Clock

Address

Control

Data

T0 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11

0 n/a n/a 1 2

Read NoOp NoOp Write Read

0 1 2
Pipelined Synchronous BurstRAM Burst Read Sequence

Clock

Address

Control

Data

<table>
<thead>
<tr>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
<th>T10</th>
<th>T11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Read</td>
<td>Burst</td>
<td>Burst</td>
<td>Burst</td>
<td>Read</td>
<td>0a</td>
<td>0b</td>
<td>0c</td>
<td>0d</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cache SRAM Breakthroughs

- 300 MHz Barrier Echo Clock Conversion
- 150 MHz Barrier BGA Conversion
- 100 MHz Barrier Revo Conversion
- 50 MHz Barrier Sync Conversion
- Revolutionary Pinout Async FSRAM
- Revolutionary Pinout Sync Late Write FSRAM
- Revolutionary Pinout Burst Sync FSRAM
- Revolutionary Pinout Double Data FSRAM (Burst + Late Write)
Processor Core Frequency vs. Volume Bus Frequency

Date

Core Freq. / Bus Freq

Volume uP
High End uP

MOTOROLA
Back Side L2 Port Architecture

Frees FSRAMs to Run at Core Frequency

- The **Traditional** CPU/ L2 Cache Architecture
 - Processor Bus Speed constrained by load to
 - 100 MHz - 133MHz in Workstation Market
 - 50 MHz - 66MHz in the PC Market
 - L2 Cache sits on the slow processor bus

- The **Emerging** CPU/ L2 Cache Architecture
 - Processor Bus Speed constrained by load to
 - 100 MHz - 133MHz in Workstation Market
 - 50 MHz - 66MHz in the PC Market
 - Cache Bus Speed
 - 133 MHz - 250 MHz in Workstation Market
 - 90 MHz - 133 MHz in the PC Market
Revolutionary Pinout and Architecture
Late Write SRAM
in Plastic BGA Package

Bottom View

Top View

Note: Drawings not to scale
R/R Late Write Synchronous Read-Write-Read Sequence

<table>
<thead>
<tr>
<th>Clock</th>
<th>T0</th>
<th>T1</th>
<th>T2</th>
<th>T3</th>
<th>T4</th>
<th>T5</th>
<th>T6</th>
<th>T7</th>
<th>T8</th>
<th>T9</th>
<th>T10</th>
<th>T11</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>0</td>
<td>n/a</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Control</td>
<td>Read</td>
<td>NoOp</td>
<td>Write</td>
<td>Read</td>
<td>Read</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Processor BUS Frequency</td>
<td>Processor Cycle Time</td>
<td>RAM Access Time Requriment</td>
<td>SRAM Type By Speed Range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MHz</td>
<td>ns</td>
<td>ns</td>
<td>Async</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>60</td>
<td>30</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>50</td>
<td>25</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>40</td>
<td>20</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>30</td>
<td>15</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>25</td>
<td>12.5</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>20</td>
<td>10</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>17</td>
<td>8.5</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>15</td>
<td>7.5</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>12</td>
<td>6</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td>5</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>8</td>
<td>4</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>142</td>
<td>7</td>
<td>3.5</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>166</td>
<td>6</td>
<td>3</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>5</td>
<td>2.5</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>4</td>
<td>2</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333</td>
<td>3</td>
<td>1.5</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>285</td>
<td>3.5</td>
<td>1.75</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>333</td>
<td>3</td>
<td>1.5</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>2.5</td>
<td>1.25</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>2</td>
<td>1</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>666</td>
<td>1.5</td>
<td>0.75</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Async
- Revo Async BurstRAM
- LW RAM
- DDR RAM
Cache SRAM Breakthroughs

- 300 MHz Barrier
 Echo Clock Conversion

- 150 MHz Barrier
 BGA Conversion

- 100 MHz Barrier
 Rev. Conversion

- 50 MHz Barrier
 Sync Conversion

- Rev. Pinout
 Double Data FSRAM
 (Burst + Late Write)

- Rev. Pinout
 Burst Sync FSRAM

- Rev. Pinout
 Sync Late Write FSRAM

- Rev. Pinout
 Async FSRAM

- Ev. Pinout
 Async FSRAM

- Ev. Pinout
 Burst Sync FSRAM
Double Data Rate Synchronous FSRAM

1M thru 16M, x16/18/32/36
in 9x17 bump BGA, 50mil Pitch

1M thru 16M
x16, 18, 32, 36
Burst Sync
1.27mm Pitch
14mm x22mm Body
PBGA Package
HSTL I/O

Top View
Rev. 3.2 - 5/30/96

Key
DQ* = NC for x16/18 version
CQ* = NC on x16/18 version
SA* = NC for x32/36 version
DQ% and DQ*% = NC for x16/x32 version

Density Upgrades

<table>
<thead>
<tr>
<th>x32/36</th>
<th>x16/18</th>
<th>3C</th>
<th>7C</th>
<th>7D</th>
<th>3D</th>
<th>BGA Package</th>
</tr>
</thead>
<tbody>
<tr>
<td>1M</td>
<td>1M</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>14mmx22mm (MO-163)</td>
</tr>
<tr>
<td>2M</td>
<td>2M</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>14mmx22mm (MO-163)</td>
</tr>
<tr>
<td>4M</td>
<td>4M</td>
<td>SA</td>
<td>SA</td>
<td>NC</td>
<td>NC</td>
<td>14mmx22mm (MO-163)</td>
</tr>
<tr>
<td>8M</td>
<td>8M</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>NC</td>
<td>TBD</td>
</tr>
<tr>
<td>16M</td>
<td>16M</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>SA</td>
<td>TBD</td>
</tr>
</tbody>
</table>
Double Data Burst Synchronous Read-Write-Read Sequence

Clock

Address

Control

Data

Echo

Clock

Double Data Burst Synchronous Read-Write-Read Sequence
L2 FSRAM Architectural Convergence

- BGA DDR RAM x18/x36
- BGA DDR RAM x32/x64
- BGA
- DDR RAM x18/x36 LW RAM
- BGA x18/x36 Pipe Burst
- TQFP x36 Pipe Burst
- TQFP x32 Pipe Burst
- PLCC x18 Pipe Burst
- PLCC x18 FT Burst
- TQFP x32 Pipe Burst

Year

66

100

133

166

200

250

300

350

400

450

500

94 95 96 97 98
The Quiet Revolution

300 MHz Barrier
Echo Clock Conversion

150 MHz Barrier
BGA Conversion

Revolutionary
Pinout
Sync Late Write
FSRAM

Revolutionary
Pinout
Double Data FSRAM
(Burst + Late Write)

100 MHz Barrier
Async FSRAM

Revolutionary
Pinout
Burst Sync FSRAM

50 MHz Barrier
Sync Conversion

Evolutionary
Pinout
Async FSRAM

Evolutionary
Pinout
Burst Sync
FSRAM