1/4-Inch CMOS Active Pixel Sensor with Smart On-Chip Functions and Full Digital Interface

Photobit
2529 Foothill Blvd, La Crescenta, CA USA 91214
fossum@photobit.com

Part I.

Brief Introduction to CMOS Image Sensors
IMAGING SYSTEMS

TIMELINE

Operability

Early MOS

CCD Performance

CMOS PPS

Sporadic activity Cost & Functionality

CMOS APS Performance, Cost & Functionality
CCD LIMITATIONS

- Requires high charge transfer efficiency
 - Special fabrication process
 - Large voltage swings, different voltage levels
- Difficult to integrate on-chip timing, control, drive and signal chain electronics
- Serial access to image data
- System power in 1-10 Watt range

CMOS IMAGE SENSOR ARCHITECTURE

Row Select Logic

Timing and Control

Pixel Array

Analog Signal Processors

Column-Parallel Analog-to-Digital Converters

Digital Output

Column Select
TIMING IS EVERYTHING

- CMOS state of the art is ripe for image sensors
 - Design rules permit competitive pixel sizes
 - Defects and contamination well controlled
 - Threshold voltages stable and fairly uniform
- Customers demand low power, miniaturized systems-on-a-chip
- Circuit techniques developed for high performance
 - Active pixel provides gain in pixel
 - Column parallel architecture permits low analog bandwidths to reduce noise and artifacts.
 - Use of double-correlated sampling and double-delta sampling on-chip removes temporal & fixed pattern noise

EVOLUTION OF FEATURE SIZE

- Enough space to put amplifier into each pixel.
ACTIVE PIXEL

- Each pixel has its own output amplifier
- Pixels are X-Y addressed
- Key is low noise readout circuit
- Best of CCD detection/readout and CMOS integration

COMMON CMOS PIXELS

- Passive Pixel
 - 1 transistor pixel
 - 10 L scaling
 - Great QE
 - Poor noise (250 e-)
 - Poor scaling for large arrays
 - Poor for fast readout

- Photodiode CMOS APS
 - 3 transistor pixel
 - 15 L scaling
 - Great QE
 - OK noise (50-100 e-)
 - Good for large arrays
 - Good for fast readout

- Photogate CMOS APS
 - 5 transistor pixel
 - 20 L scaling
 - Good QE
 - Great noise (15 e-)
 - Good for large arrays
 - Good for fast readout
APS QUANTUM EFFICIENCY

SCALING TREND
ON-CHIP ADC

- Permits full digital interface
- Permits on-chip DSP for camera control, color interpolation, etc.
- Suppresses noise pick up from EMI, crosstalk
- Simplifies interface
- Permits faster readout
- Can reduce overall chip power

ON-CHIP ADC CHOICES

- One (or two or three) ADCs per chip
 - High data rate requirement (5-60 Mconv/s)
 - Local high power dissipation
- One ADC per pixel
 - Large pixels and low fill factor
- One ADC per column (column-parallel)
 - Tall, skinny ADCs
- Single-slope
 - slow
- Successive approximation
 - 8-10 b max
- Algorithmic
 - needs op-amp
- Oversampled
 - Filter takes lots of area
- Flash
 - Lots of power
PB256E

- 256x256 Element PD-APS
- 256 Column-parallel ADCs
- 8b Resolution
- On-chip FPN suppression
- 30 frames per second
- Under 50 mW total power
- Note lack of blooming or other artifacts

ADVANTAGES OF CMOS APS

- Maintains high performance of CCD sensors
 - high sensitivity, low noise, wide dynamic range
 - no smear, no blooming, no lag
- 100 x less system power than comparable CCD system
 - 10-50 milliWatts instead of 1-5 Watts
 - single 5V (3.3V) supply, full digital interface
- 10 x less camera volume than comparable CCD system
 - on-chip integration of timing, control, ADC functions
- 2 x less cost
 - fewer components, simple module assembly
- Unique functional advantages
 - Window of interest readout for electronic pan, tilt, zoom.
 - Ultra wide intrascene dynamic range
 - On-chip DSP and sensor control functions (e.g. AGC)
Part II.

1/4-Inch CMOS APS with On-Chip Smart Functions and Full Digital Interface (PB159)
STATUS

- Sensor is in fabrication (7/7/97).
CHIP SPECIFICATIONS

Total Effective Pixels : 196,608 (512 x 384)
Pixel Size : 7.9 µm x 7.9 µm photo-diode
Shutter : electronic rolling snap
CDS : on chip
ADC : on chip 8 bit column parallel
Output : 8 bit color digital video
Data rate : 14.3 Mbytes/s
Auto Exposure : on chip with manual user override
Package : 40 pins
Timing and Control : on chip controller with 14.3 MHz master clock
Power : 40 - 50 mW
Programmable features : window size and location
 exposure
 ADC reference
 frame rate
 ADC test mode
 readable chip internal registers for test
 auto exposure parameters (update rate, thresholds)
 on command ADC calibration

SENSOR BLOCK DIAGRAM
FEATURES

• Default power up state does not require user to program the device in order to get continuous video (default setting produces 512 x 384 window at a 30 Hz frame rate with auto exposure enabled).

• Industry standard serial interface to load user commands (Sensor has 2 hardware selectable device addresses so that other devices can share the serial bus including another APS sensor).

• Auto exposure settings includes a disable for manual exposure control. Hold current exposure command also available for auto-exposure.

FEATURES (cont.)

• Adjustable frame rate (3-40 Hz)

• Sensor chip enable register allows user to pause imager (no integration).

• Low power standby pin available to turn off DC power consumption (10 mW residual AC power from 14.3 MHz clock component)

• Simple user interface has a master clock, 2 signals for serial interface, 8 data outputs, 4-5 bias pins (1.2V, 2.5V, 1V), VDD(5V), and GND(0V). External biases generated with simple resistor divider between VDD and GND.
OUTPUT DATA FORMAT

- 8 bit digital image data with embedded sync's (pseudo CCIR-656)
- data control codes requires FF, 00 image data to be mapped to FE, 01
- frame valid, line valid sync output pins also available

SUMMARY

- CMOS APS technology permits high performance imaging with standard CMOS.
- A new 1/4-inch CMOS APS with smart on-chip functions and full digital interface has been introduced.