V830R/AV: Embedded Multimedia Superscalar RISC Processor with Rambus® Interface

Tomohisa Arai, Kazumasa Suzuki, Ichiro Kuroda
NEC Corporation

Outline

- Chip Highlights
- Instruction Set Architecture (ISA)
- Micro Architecture
- Performance
- Summary
Chip Highlights (1)

- High Performance Embedded RISC
 - Dual-issue Superscalar
 - 200MHz
 - Over 250 MIPS@Dhrystone 1.1
 - 2,000 MOPS@16-bit Data
 - MPEG2 A/V Decoding
 - MPEG1 Video Encoding
 - Under 2W Power Consumption

- 32KB On-chip Cache Memory
 - 16KB 4-way Instruction Cache
 - 16KB 4-way Non-blocking Data Cache
 - Freeze Function

Chip Highlights (2)

- Multimedia Extension
 - 64-bit SIMD Multimedia Coprocessor
 - Multimedia Oriented Peripheral Integration
 - Audio/Video Output Port

- On-chip Rambus DRAM Interface
 - High Bandwidth Rambus DRAM Memory System
 - Multimedia Processing in UMA Environment
 - Memory/System Separated Bus
 - Sufficient Bandwidth for Total System Operation

- On-Chip Debug Support
 - ICE Interface
Chip Highlights (3)

- **Technology**
 - 0.25\(\mu\)m CMOS
 - 4 Layer Metal
 - 2.5V with 3.3V I/O
 - 3M Tr.

- **Package**
 - 208-pin Plastic QFP
 - 0.5mm Lead Pitch

V830 ISA

- **RISC ISA with Improved Code Density**
 - Based on V810 RISC ISA
 - 32 General Purpose Register Set
 - Variable Length Code Format
 - 16-bit and 32-bit
 - 2-operand

- **MIX : Multimedia Instruction Extension**
 - Extension for Media Signal Processing
 - 32-bit Saturation Arithmetic Operation
 - 32-bit Pipelined Single-cycle MAC Operation
 - 32-bit Min/Max Operation
 - 32-bit Concatenate and Shift Operation
 - 3-operand
V830R ISA

- V830 Upward Compatible Integer ISA
- MIX2: Multimedia Instruction Extension 2
 - 64-bit SIMD Media Coprocessor
 - 32 Coprocessor Register Set
 - 56 SIMD Media Instructions
 - Saturated Additions
 - Saturated Subtractions
 - Multiply-and-Accumulate (MAC)
 - ME Oriented Special Instructions
 - 3-operand
 - Cache Control Instructions
 - Invalidate
 - Write Back

MIX2 Summary

<table>
<thead>
<tr>
<th>32-bit Transfer</th>
<th>64-bit Transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Move Mem. -> CP Reg.</td>
<td>ldcp.w</td>
</tr>
<tr>
<td>CP Reg. -> Mem.</td>
<td>stcp.w</td>
</tr>
<tr>
<td>Reg. -> CP Reg.</td>
<td>mtcp.d</td>
</tr>
<tr>
<td>CP Reg. -> CP Reg.</td>
<td>mfcph.w, mfcpl.w</td>
</tr>
<tr>
<td>CP Reg. -> Mem.</td>
<td>movcp.d</td>
</tr>
</tbody>
</table>

- Arithmetic Vector Add: vsatadd.b, vadd.h, vsatadd.h, vadd.w
- Vector Subtract: vsatsub.b, vsub.h, vsatsub.h, vsub.w
- Vector Multiply: vmul.h, vmult.h
- Vector MAC: vmac.h, vmacr.h, xvmach.hw, xvmaccl.hw
- Scalar Add: sadd.h
- Scalar Subtract: ssub.h
- Scalar Multiply: smul.h, smult.h
- Scalar MAC: smac.h, smacr.h, smacr.h
- Compare Vector Max: vmx.h
- Vector Min: vmin.h
- Scalar Max: smax.h
- Scalar Min: smin.h
- Convert Pack: cvtpk.hb
- Interleave: itlvh.b, itlvl.b, itlvh.h, itlvl.h, itlvh.w, itlvl.w
- Logical OR: orcp.d
- AND: andcp.d
- XOR: xorcp.d
- Not: notcp.d
- Shift Logical Left: vshl.h, vshl.w, vshl.d
- Logical Right: vshr.h, vshr.w, vshr.d
- Arithmetic Right: vsar.h, vsar.w
- Shift and Add: vsftadd.hw, vsftadd.w
- Etc. Partial Absolute Diff: vpad.bh
Pipeline Structure

- **6-stage De-coupled Pipeline**
 - Instruction Pipeline is De-coupled with Execution Pipelines
 - High Frequency Operation

- **Instruction Pipeline (I-pipe)**
 - Early Resolution of Branch

- **Integer Pipeline (V-pipe)**
 - Data Forwarding

- **Media Pipeline (M-pipe)**
 - Multiple Execution Stages
 - No Data Forwarding

Superscalar Operation

- **Dual-issue Superscalar**
 - Media Instruction + Integer Instruction
 - In-order Issue
 - Out-of-order Completion

- **VLIW-like Instruction Issue**
 - “Templated” Instruction Issue Scheme

- **Dependency Control**
 - Within Instruction Queue

- **Simple Exception Handling**
 - No Exception on M-pipe
 - No Side-effect on V-pipe Exception
Instruction Unit

- Branch Prediction
 - 2-bit Branch Prediction Table
- Branch Target Address Cache
 - 128 Entries (64x2)
 - 2-way Set-associative
 - LRU Replacement
- Instruction Queue
 - 24-byte (Up to 12-instructions)
 - Squash Unconditional Branch
 - Zero Clock Branch
 - Conceal Overhead due to Variable Length Instruction Code
 - De-coupled Structure
 - “Templated” Instruction Issue Scheme

“Templated” Instruction Issue Scheme

VLIW-like Parallel Issue Template

M → V16
or
M → V32
Integer Unit

- 32 x 32-bit General Purpose Registers
- Conventional 4-stage Pipeline
 - RF, EX, DF, WB
 - With Data Forwarding Control
 - With Interlock Control
- Multimedia Oriented Function
 - 32-bit x 32-bit Multiply-adder
 - Precision required Signal Processing such as Audio Processing
 - Concatenate and Shift
 - Useful for VLC/VLD

Media Extension Unit

- 32 x 64-bit Coprocessor Registers
- 64-bit SIMD Datapath
 - Supported Data Type
 - 64-bit x 1, 32-bit x 2, 16-bit x 4 (Signed Integer, Signed Fixed Point), 8-bit x 8
 - SIMD Capability
 - 16-bit Multiply-adder with Special Rounding
 - Extended Precision MAC Operation
 - Dual 16-bit x 16-bit + 32-bit --> 32-bit MAC Operation
- Simple 4-stage Pipeline with Multiple Execution Stage
 - RF, EX1, EX2, WB
 - No Data Forwarding
 - Latency/Repeat = 4/1
 - No Exception
Special Rounding

- **Maximize Precision**
 - Fixed Point Style Data Handling
 - Used in vmacrs.h, smacrs.h Instruction

- **Rounding Scheme**
 - Decimal Point Adjustment
 - Symmetrical Rounding

Precision Evaluation

- **IDCT Algorithm**
 - Row-Column Composed 2D-DCT
 - Double Stage Composed 1D-DCT

- **Evaluation Data**
 - Random
 - From -384 to 383

<table>
<thead>
<tr>
<th></th>
<th>PEAK ERROR</th>
<th>MEAN SQUARE ERRORS</th>
<th>MEAN ERRORS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Worst Overall</td>
<td>Worst Overall</td>
</tr>
<tr>
<td>IEEE1180 Upper Limit</td>
<td>1</td>
<td>0.0600 0.020000</td>
<td>0.0150 0.001500</td>
</tr>
<tr>
<td>Without Special Rounding</td>
<td>1</td>
<td>0.0791 0.060617</td>
<td>0.0061 0.000561</td>
</tr>
<tr>
<td>With Special Rounding</td>
<td>1</td>
<td>0.0122 0.010145</td>
<td>0.0026 0.000016</td>
</tr>
</tbody>
</table>
Cache Summary

<table>
<thead>
<tr>
<th></th>
<th>I-Cache</th>
<th>D-Cache</th>
</tr>
</thead>
<tbody>
<tr>
<td>Associativity</td>
<td>4-way Set Associative</td>
<td>4-way Set Associative</td>
</tr>
<tr>
<td>Replacement</td>
<td>LRU</td>
<td>LRU</td>
</tr>
<tr>
<td>Write Strategy</td>
<td>-</td>
<td>Write Back/Write Allocate</td>
</tr>
<tr>
<td>Non-Blocking</td>
<td>-</td>
<td>Hits under Miss</td>
</tr>
<tr>
<td>Capacity</td>
<td>16KB</td>
<td>16KB</td>
</tr>
<tr>
<td></td>
<td>Freezable upto 8KB on Entry Basis</td>
<td>Freezable upto 8KB on Entry Basis</td>
</tr>
<tr>
<td>Line Size</td>
<td>64B</td>
<td>64B</td>
</tr>
</tbody>
</table>

Cache Freeze Function

- Can be used as Ideal Memory
 - Never Miss
 - No Unpredictable Miss Penalty
 - Useful for Timing Assurance

- Freezing Scheme
 - Way-0 and Way-1
 - Up to 8KB can be Frozen
 - Entry by Entry Basis
 - Reduced Way Cache Operation

- On-demand Setup Capability
 - Load and Freeze at Initial Access Time
 - Don’t care for explicit Loading
RCU : RDRAM™ Control Unit

- **Concurrent RDRAM Protocol Support**
 - Lower Latency with DRAM State Management
 - Higher Transfer Data with Interleaved Access
 - Max. 18M-byte
 - Up to 8 16M/18M RDRAM
 - Up to 2 64M/72M RDRAM

- **Memory Request Queuing**
 - 8-entry Instruction Queue
 - 64-byte x 8 Data Buffer

- **Interleaved Access**
 - 128-byte = 2 x 64-byte
 - 256-byte = 4 x 64-byte

- **Pre-fetch**
 - In Case of I-Cache Refill
 - Next 64-byte

- **Address Re-mapping**
 - Utilize Sense-amp Cache
 - Avoid Bank Conflict

RCU Structure

Diagram showing the internal bus, Ibus slave-if, Command decoder, Scoreboard, Data buffer (64-byte 8-entries), Instruction queue (8-entries), RMC control, RMC, RAC, and RDRAMs (max. 8 devices).
Other Peripherals

- Multimedia Peripherals
 - VCU : Video Control Unit
 - 16-bit Video Output
 - Double Data Buffer (256-byte X 2)
 - Y1C/Y0Cb Pixel Data Format
 - ACU : Audio Control Unit
 - Serial Audio Output
 - Double Data Buffer (256-byte X 2)
 - 16b 2-channel Audio Data Format

- “Bulk” DMA Unit
 - Efficient “Packed” Data Transfer between
 - RDRAM and System Bus
 - RDRAM and Internal Peripherals
 - 4-ch

- Bus Control Unit
 - 32-bit A/D Multiplexed
 - Up to 66MHz
 - Single&Burst Bus Cycle

- Standard Peripherals
 - UART : 150~76800BPS
 - CSI : ~8.25MBPS
 - BRG
 - RPU : 16-bit Timer x 3
 - ICU : 17-ch
 - PORT : 1-bit I/O Port x 3

- Debug Control Unit
 - Serialized ICE Interface

- Standard Peripherals
 - UART : 150~76800BPS
 - CSI : ~8.25MBPS
 - BRG
 - RPU : 16-bit Timer x 3
 - ICU : 17-ch
 - PORT : 1-bit I/O Port x 3

Performance (1)

- MPEG2 A/V Decoding Profile
- Video
 - 720 x 480 x 30fps
 - 4:2:0 Format
 - 4Mbps
- Audio
 - MPEG Audio Layer2
- System
 - Program Stream Decode
Performance (2)

- MPEG1 Video Encoding Profile
- Search Range
 - +/- 16 Pixels
- 3 Step Search Algorithm
 - 2 x 2 Subsampling
 - Pel Precision
 - Half-Pel Precision
- Frame Structure
 - I2P8B20
 - 48fps

Summary

- High Performance Embedded Superscalar RISC Processor
 - Dual-issue Superscalar by VLIW-like “Templated” Instruction Issue Scheme
 - 32K-byte On-chip Cache Memory with Freeze Capability
 - 258MIPS, 2,000MOPS@16-bit at 200MHz

- 64-bit SIMD Multimedia Extension
 - Specially Designed 16-bit MAC with Special Rounding Scheme
 - 4-way Parallel IDCT Compliant to MPEG2 Standard

- On-chip Rambus® DRAM Interface
 - UMA for Multimedia Processing with 600MB/s Rambus DRAM Memory System
 - Realizes A Processor based Low Cost MPEG2 A/V Decoding System