M32Rx/D - A Single Chip Microcontroller with A High Capacity 4MB Internal DRAM

Toru Shimizu

Mitsubishi Electric Corporation
System LSI Division
4-1 Mizuhara, Itami, Hyogo, 664 Japan
Overview

• Highlights

• M32Rx Architecture
 – M32Rx ISA, and Micro-Architecture

• Embedded RAM (eRAM) Technology
 – Fusion of a 32-bit RISC and a High Capacity DRAM
 – High bandwidth can be achieved by wide internal bus

• Summary
M32Rx Highlights

• A high capacity (4MBytes) DRAM is integrated with a 32-bit RISC core

The world first DRAM integrated RISC chip

• A dual-issue pipeline is implemented

• Fast data transfer to and from the external bus can be achieved using the wide (128bit) internal bus
M32Rx Features

- Simple 32-bit core coupled to a high capacity DRAM
 - Overcomes the memory access bottleneck in execution
 - Low power dissipation due to main memory integration

- Good performance for embedded systems
 - Target applications
 - Multimedia applications: Image compression, Audio, Speech recognition, Voice compression, etc.
 - Communications: Decode/Encode, Networking, Modem, etc.
 - Target Systems
 - Digital cameras, Internet terminals, Telephone, PDAs, etc.
M32Rx Architecture

• M32Rx ISA (Instruction Set Architecture)
 – M32R ISA Upwards Compatible
 • 32-bit x 16 General Purpose Registers
 • 56-bit x 2 Accumulators utilized by DSP function instructions for multimedia applications
 – Variable Length Code Format: 32-bit / 16-bit
 • Two 16-bit instructions can be executed in parallel
 • High code efficiency due to 16-bit instructions

• Pipeline Structure
 – Dual-Issue, 6-Stage Pipeline
 – In-Order Issue, Out-of-Order Completion
M32Rx ISA (Instruction Set Architecture)

• M32R ISA Upwards Compatible
 – Total 95 instructions = M32R compatible 83 instrs.
 + 12 additional instrs. (including 5 additional DSP function instrs.)

• Variable Length Code Format: 32-bit / 16-bit
 – Two 16-bit instructions can be executed in parallel

<table>
<thead>
<tr>
<th></th>
<th>16bit Instruction A</th>
<th>16bit Instruction B</th>
<th>32bit Instruction</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>MSB</td>
<td>MSB</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>MSB</td>
<td>executed sequentially</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>16bit Instruction A</td>
<td>1</td>
<td>16bit Instruction B</td>
</tr>
<tr>
<td>0</td>
<td>16bit Instruction A</td>
<td>1</td>
<td>16bit Instruction B</td>
</tr>
<tr>
<td>1</td>
<td>32bit Instruction</td>
<td>executed in parallel</td>
<td></td>
</tr>
</tbody>
</table>

MITSUBISHI ELECTRIC CORPORATION
M32Rx Pipelines

- Dual issue implemented by using two pipelines
Instruction Issuing

• Available instruction categories for each pipeline
 – Arithmetical/Logical operations can be executed in both pipelines
 – Load/Store and Jump/Branch operations can be executed only in Pipeline1
 – Multiply and Accumulate operations can be executed only in Pipeline2

<table>
<thead>
<tr>
<th>Operation</th>
<th>Pipeline1</th>
<th>Pipeline2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arithmetic Op.</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Logical Op.</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>Load/Store Op.</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Jump/Branch Op.</td>
<td>O</td>
<td>X</td>
</tr>
<tr>
<td>Multiply and Accumulate Op.</td>
<td>X</td>
<td>O</td>
</tr>
</tbody>
</table>
Pipeline Structure

- Two 6-Stage Pipelines
DSP Function Instructions

- Multiple and Accumulate Instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Register</th>
<th>Operation</th>
<th>Accumulator</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACLO</td>
<td>16bit X 16bit</td>
<td>+ 56bit</td>
<td>56bit</td>
</tr>
<tr>
<td>MACHI</td>
<td>16bit X 16bit</td>
<td>+ 56bit</td>
<td>56bit</td>
</tr>
<tr>
<td>MACWLO</td>
<td>32bit X 16bit</td>
<td>+ 56bit</td>
<td>56bit</td>
</tr>
<tr>
<td>MACWHI</td>
<td>32bit X 16bit</td>
<td>+ 56bit</td>
<td>56bit</td>
</tr>
</tbody>
</table>

- Rounding Instructions

<table>
<thead>
<tr>
<th>Instruction</th>
<th>Accumulator</th>
<th>Rounding</th>
</tr>
</thead>
<tbody>
<tr>
<td>RACH</td>
<td>Saturate 16bit Round</td>
<td>16bit</td>
</tr>
<tr>
<td>RAC</td>
<td>Saturate 32bit Round</td>
<td>32bit</td>
</tr>
</tbody>
</table>

Sign extension
eRAM: Embedded RAM Technology

- Logic and memory are integrated in one chip
 - Logic: CPU, ALUs, Multipliers, En/Decoders, etc.
 - Memory: DRAMs, SRAMs, Flash-ROMs, etc.

- High bandwidth can be achieved by connection via wide internal buses

- Total system performance can be increased
 - High performance
 - Low power consumption
 - Small package footprint on PCB
High Performance Memory System

• Cache SRAM and Internal DRAM are interconnected by a 128-bit Internal Bus
 – High Bandwidth: 1.5GByte/s @ 100MHz
 – High speed cache-line replacement

 Applied to embedded systems

• Very good cost/performance memory system
 – Simple Cache can be employed due to high speed internal DRAM
 • Cache can be simplified to realize the same processing performance
 • Large and complex cache is expensive
 – Power dissipation is reduced
Internal Bus Organization

- Modular design methodology has been employed
External Bus-Master Access

- M32Rx/D chip can be accessed like a memory chip
 - Fast external bus-master accesses can be executed using the wide internal bus
 - CPU operations are almost undisturbed by external accesses
External Bus-Master Access (Cont.)

- Internal bus arbitration
 - An Operand Access (OA) request and an External Bus-Master Access (EA) request may happen at the same time
 - EA requests take priority over OA requests
 - To avoid dead-locks, D-cache can accept EA requests during miss operations as well

- To keep data coherency:
 - Data must be accessed through the D-Cache
 - Only data in the internal DRAM space is cacheable
Cache Memories

- Single cycle read, two cycle write

- Instruction Cache: 4KByte, Data Cache: 4KByte
 - Direct-mapped, separate I and D caches
 - Data cache is a write-back cache

- D-Cache is accessed during external bus-master accesses to internal DRAM so as to keep data coherency

- Data Buffers
 - D-Cache has Write and Read Buffers to enhance write and write-back performance
BIU and Buffers

- The BIU converts data between the 128-bit internal bus and the 32-bit external bus.
- The BIU supports a burst transfer mode to realize fast data transfers to and from external devices.
- The BIU has two Read Buffers and two Write Buffers.
 - Double buffering is employed to enable seamless burst transfers between the internal DRAM and external devices.
External Bus-master Access (Evaluation)

- CPU operations are almost undisturbed by external accesses
 - ex. Dhrystone 2.1 + External Bus-Master Access (Burst Read)

<table>
<thead>
<tr>
<th>D-Cache</th>
<th>External Burst Read</th>
<th>Performance Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>No</td>
<td>1.00</td>
</tr>
<tr>
<td>ON</td>
<td>Yes</td>
<td>1.05</td>
</tr>
<tr>
<td>OFF</td>
<td>No</td>
<td>5.08</td>
</tr>
<tr>
<td>OFF</td>
<td>Yes</td>
<td>12.9</td>
</tr>
</tbody>
</table>
Other M32Rx/D Features

• Debugging Support
 – JTAG interface

• Multiprocessing Support
 – Master-Slave mode

• Power Saving Modes
 – Stand-by mode:
 • Only the DRAM clock is supplied, other clock supplies are stopped
 – CPU sleep mode
 • CPU and Caches are stopped
 • D-Cache is woken up by external bus-master accesses
M32Rx/D Specification

<table>
<thead>
<tr>
<th>CPU Core</th>
<th>Architecture</th>
<th>M32R Architecture Upwards Compatible (12 additional instructions including 5 additional DSP function instructions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipeline</td>
<td>2-instr. parallel execution, 6 stage</td>
<td></td>
</tr>
<tr>
<td>DSP Function</td>
<td>MAC (32bit x 16bit + 56bit) 1 cycle execution, 2 accumulators</td>
<td></td>
</tr>
<tr>
<td>Cache</td>
<td>Instruction: 4K Byte, Data: 4K Byte</td>
<td></td>
</tr>
<tr>
<td>Performance</td>
<td>110 MIPS (Dhrystone), 200MOPS @100MHz</td>
<td></td>
</tr>
<tr>
<td>Internal Memory</td>
<td>4M Byte (32M bit), x 128 bit organization</td>
<td></td>
</tr>
<tr>
<td>Peripheral Functions</td>
<td>JTAG Interface / Debug Function</td>
<td></td>
</tr>
<tr>
<td>External Bus</td>
<td>Address: 27 bit, Data: 16/32 bit, 25MHz(max)</td>
<td></td>
</tr>
<tr>
<td>Operating Clock</td>
<td>100 MHz (internal)</td>
<td></td>
</tr>
<tr>
<td>Power Supply</td>
<td>External: 3.3V, Internal: 2.5V</td>
<td></td>
</tr>
</tbody>
</table>
M32Rx
Chip Layout

- Design Rule
 - 0.25 m CMOS, 3 Metal
- Chip Size
 - 9.7 x 10.29 mm²
Summary

• M32Rx/D chip as a CPU with DRAM
 – A high performance microcontroller boosted by a high performance internal memory system

• M32Rx/D chip as a DRAM with CPU
 – An intelligent memory
 – Multi-processor/multi-memory systems

Mitsubishi M32R family chips provide many possibilities for new styles of computing, Enjoy!