Genesis
Microprocessor
Hot Chips X
August 17, 1998

Jack Choquette
Principal Engineer & Architect

SandCraft, Inc.
3003 Bunker Hill Lane
Suite #101
Santa Clara, CA
(V) 408.490.3237
(F) 408.490.3111
www.sandcraft.com
Presentation Outline

- Design Objectives
- Processor Features
- Micro-Architecture Overview
- Dual-Issue Superscalar Implementation
- Feature Comparison
- Summary
Design Objectives

- High Performance: 200+ MHz, 400 Dhrystone MIPS
- Efficient Memory: High Performance in Low Cost System
- Unique Features: DSP Functions & Image Processing
- Debug: System Debug Support
- Low Cost: 7mm x 7mm Die, Plastic Package
- Time To Market: 15 Months Development Time

Project Goal: Highest Performance in Its Class
Genesis Feature List

- **ISA:** MIPS-I through MIPS-IV, with Extensions to Support DSP & Vector Processing
- **Pipeline:** Symmetric Dual-Issue Superscalar
 - 2 Unified Integer-FP Units
 - Multiply-Accumulate Unit
 - 8 x 8-bit Packed-Data Vector Unit
 - Load-Store Unit
 - Branch Unit
- **I-Cache:** 32K-bytes, 2-way Set-Associative, Line Locking, LRU, Word Parity
- **D-Cache:** 32K-bytes, 2-way Set-Associative, Line Locking, LRU, Byte Parity, Write Back / Write Through
- **MMU:** 48 Double-entry Fully Associative TLB, with Separate 4-entry Micro TLB for Instruction & Data
- **Sys Interface:** R5000 Downward Compatible, with Features to Minimize Latency & Increase Throughput
- **Debug:** JTAG, N-Wire/N-Trace
Goals

DSP & Image Processing Support
Extended Instructions

- MIPS-IV ISA, Plus Following Enhancements:
 - 16 New Integer Multiply Accumulate Instructions
 - 32 x 32 Multiply with 64-bit Accumulate
 - 3 Cycle Latency, 1 Cycle Repeat Rate
 - 32-bit and 64-bit Rotate Instructions
 - 31 New Media Instructions
 - 8 x 8 bit Vector Instructions
 - Single 8 x 24-bit Vector Accumulator
 - Two or One Cycle Latency
 - 1 Cycle Repeat Rate for Most Instructions
Goals

- DSP & Image Processing Support
- Maintain Performance with an inexpensive memory system
Memory Latency Tolerance Features

- Large Caches
 - 32K I, 32K D
 - 2-Way
 - Per Line Locking

- Non-blocking Load/Store Unit
 - Up to 4 Data Prefetches
 - Up to 4 Non-blocking Loads or Stores

- Split Transaction System Interface
 - 4-entry Transaction Buffer
 - Up to 4 Outstanding Read Request
 - Interleaved Write Operations Between Read Request and Response
Goals

- DSP & Image Processing Support
- Maintain Performance with an inexpensive memory system
- Easy and Inexpensive System Debug to Decrease System Designer’s Time to Market
Debug Features

- Industry-standard Debug Support
- IEEE 1149.1 JTAG
- N-wire, N-trace
- Full External Access to:
 - Processor Architecture State
 - System Memory
- Multiple Breakpoints on:
 - Instruction Address
 - Data Address
 - Data Value
- Single-step Through Code
- Instruction Trace Capabilities and Performance Counters
Goals

- DSP & Image Processing Support
- Maintain Performance with an inexpensive memory system
- Easy and Inexpensive System Debug to Decrease System Designer’s Time to Market
- Clean and Efficient Microarchitecture
Micro-Architecture Block Diagram

IC Stage

RF Stage

EX Stage

DC Stage

WB Stage
Data Pipeline

Register File

Left Operands

Left Result

Load/Store Unit

MAcc/Vector Unit

Right Operands

Right Result

Left Int/FP Unit

Right Int/FP Unit

Left Result Staging

Right Result Staging

Left Pipe

Right Pipe
Genesis Microprocessor
NEC VR5464™ Device Specification*

<table>
<thead>
<tr>
<th>Category</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Process</td>
<td>0.25um, 3LM, 6-T SRAM cells</td>
</tr>
<tr>
<td>Frequency</td>
<td>250 MHz Pipeline, 100 MHz I/O</td>
</tr>
<tr>
<td>Performance</td>
<td>519 MIPS, 10 SPECint95, 4.5 SPECfp95</td>
</tr>
<tr>
<td>Die Size with scribe</td>
<td>47 mm²</td>
</tr>
<tr>
<td>Voltage Supply</td>
<td>3.3-volt I/O, 2.5-volt Core</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>4.4 watts</td>
</tr>
<tr>
<td>Package</td>
<td>272-pin plastic BGA</td>
</tr>
<tr>
<td>Price (10K)</td>
<td>$95</td>
</tr>
</tbody>
</table>

*Source: Microprocessor Report 3/9/98

TM -- trademark of NEC Electronics
Feature Comparison

<table>
<thead>
<tr>
<th></th>
<th>VR5464</th>
<th>VR5432</th>
<th>RM5270</th>
<th>RM5230</th>
<th>EC603e</th>
<th>SA-110</th>
<th>SH7750</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture</td>
<td>MIPS</td>
<td>MIPS</td>
<td>MIPS</td>
<td>MIPS</td>
<td>PowerPC</td>
<td>ARM</td>
<td>SuperH</td>
</tr>
<tr>
<td>Vendor</td>
<td>NEC</td>
<td>NEC</td>
<td>QED</td>
<td>QED</td>
<td>Motorola</td>
<td>Intel</td>
<td>Hitachi</td>
</tr>
<tr>
<td>IP Provider</td>
<td>SandCraft</td>
<td>SandCraft</td>
<td>QED</td>
<td>QED</td>
<td>Motorola</td>
<td>Digital</td>
<td>Hitachi</td>
</tr>
<tr>
<td>Frequency</td>
<td>250 MHz</td>
<td>167 MHz</td>
<td>200 MHz</td>
<td>175 MHz</td>
<td>266 MHz</td>
<td>233 MHz</td>
<td>200 MHz</td>
</tr>
<tr>
<td>Execution Units</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Issue/clock</td>
<td>2</td>
<td>2</td>
<td>1 Int, 1 FP</td>
<td>1 Int, 1 FP</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>FPU?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Hardware MAC?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Vector operations?</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Caches (I/D)</td>
<td>32K / 32K</td>
<td>32K / 32K</td>
<td>16K / 16K</td>
<td>16K / 16K</td>
<td>16K / 16K</td>
<td>16K / 16K</td>
<td>8K / 16K</td>
</tr>
<tr>
<td>Non-blocking Load/Stores</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Cache locking?</td>
<td>yes (per line)</td>
<td>yes (per line)</td>
<td>yes (per set)</td>
<td>yes (per set)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Bus width</td>
<td>64 bits</td>
<td>64 bits</td>
<td>64 bits</td>
<td>32 bits</td>
<td>64 bits</td>
<td>32 bits</td>
<td>64 bits</td>
</tr>
<tr>
<td>IEEE 1149.1 JTAG support?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>?</td>
</tr>
<tr>
<td>Debug support?</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Fab process / Metal Layers</td>
<td>0.25um / 3LM</td>
<td>0.25um / 3LM</td>
<td>0.35um / 3LM</td>
<td>0.35um / 3LM</td>
<td>0.35um / 4LM</td>
<td>0.35um / 3LM</td>
<td>0.25um</td>
</tr>
<tr>
<td>Die Size</td>
<td>47 mm²</td>
<td>47 mm²</td>
<td>84 mm²</td>
<td>84 mm²</td>
<td>98 mm²</td>
<td>50 mm²</td>
<td>58 mm²</td>
</tr>
<tr>
<td>Voltage (V)</td>
<td>2.5 / 3.3</td>
<td>2.5 / 3.3</td>
<td>3.3V</td>
<td>3.3</td>
<td>2.5 / 3.3</td>
<td>1.65 / 3.3</td>
<td>1.8 / 3.3</td>
</tr>
<tr>
<td>Power (typical)</td>
<td>4.4W</td>
<td>2.5W</td>
<td>4.0W</td>
<td>3.6W</td>
<td>4.8 W</td>
<td>1.1W</td>
<td>1.5W</td>
</tr>
<tr>
<td>Dhrystone MIPS</td>
<td>519</td>
<td>347</td>
<td>260</td>
<td>227</td>
<td>376</td>
<td>268</td>
<td>360</td>
</tr>
<tr>
<td>MIPS/MHz</td>
<td>2.1</td>
<td>2.1</td>
<td>1.3</td>
<td>1.3</td>
<td>1.4</td>
<td>1.2</td>
<td>1.8</td>
</tr>
<tr>
<td>SPECint95</td>
<td>10 (est.)</td>
<td>n/a</td>
<td>5.5</td>
<td>4</td>
<td>6.7</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>SPECfp95</td>
<td>4.5 (est.)</td>
<td>n/a</td>
<td>6.1</td>
<td>4.2</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Price (10K) - MPR 3/9/98</td>
<td>$95</td>
<td>$45</td>
<td>$75</td>
<td>$35</td>
<td>$81</td>
<td>$49</td>
<td>$40</td>
</tr>
</tbody>
</table>
Conclusion

Project Goals Emphasized:

- Design Efficiency and High Execution Throughput
 - De-coupled Instruction Fetch and Execution Datapaths
 - Symmetric Dual Pipelines
 - DSP & Image Processing Extensions
- Low Cost without Sacrificing Performance
 - Efficient Memory
 - Clean Superscalar implementation
 - Inexpensive Processor
 - Debug Support for Faster System Design
- Making a Clean Design to Achieve the Shortest Development Time
 - From Specification to Tapeout in 15-1/2 Months

Full Featured, Desktop Performance, Embedded Price