Blitzen: Lightning Speed 3D Geometry Accelerator

1998

Alan Krech

Personal Systems Group

Hewlett-Packard Company
Blitzen Project Goals

- Provide World-class 3D Geometry Acceleration
- API Independence--OpenGL, Starbase, PEX
- Platform Independence--Unix, PC
- Low-cost
- Short Time-to-market
- Highly Scalable Architecture
System Block Diagram

PCI/AGP
Xface
State
Mgmt

Texture Mapping

Texture Mapping

Frame Buffer Controller

Frame Buffer Controller

Blitzen

Blitzen

Blitzen
Key Blitzen Features

- Geometric Transformations--Triangles, Quads, and Vectors
- Lighting (up to 8 sources directional or positional)
- View Volume Clipping
- Plane Equation Computation
- Texture Mapping Set-up
Additional Blitzen Features

- Fog and Depth Cueing
- Texture Coordinate Generation
- 6-plane Model Clipping
- Environment Mapping Set-up
- Front/Back Face Culling and Lighting
- Full-featured OpenGL Programming Interface and Starbase API Support
- Separate Specular Lighting Application
Blitzen Design

- Two Independent and Identical Slices
  - HP-PA Floating Point Core--ALU, Multiplier, Divider, and Register File
  - Wide-word Instruction ROM
  - Micro-instruction Branching Control
  - Multiple Double-buffered RAMs
  - OpenGL State Management Logic
  - Flow Control for Multiple Slices/Chips
Blitzen ROM Design

Next ROM Address

ROM and Register

Indirect Addressing

Loop Cntr & Flags

Misc. Flags

Compare Flags

Branch Logic

 mux

 mux

 F0

 F1

 F2

 F3

 Data Path

Misc. Flags

Compare Flags

Branch Logic

Loop Cntr & Flags

Indirect Addressing

ROM and Register

Next ROM Address
Blitzen ROM Design

- Up to 8-way No-penalty Branching
- Independent Branching Control
- Indirect Addressing for Code Reduction
- Looping Control For Use of Subroutines
- Global Flags with Feedback for “State Machine” Intercommunication
- Wide-word Instruction Controls Entire Data path
Why Not Use a CPU?

- Instruction Set Is Limited--fadd, fsub, fmpy, fmac, fdiv, etc.--inefficient algorithms.
- Data Origination/Destination Is Limited--fastest performance requires data reside only in register file.
- Very Complex Instructions Must Be Unwrapped--e.g. clip-code generation.
- Complex Branching Costly--wasted states.
The Blitzen “CPU” Design

- Leveraged from HP-PA Design
- Modified ALU Instructions for Enhanced Graphics Support
  - Add and Subtract with Clamp
  - Special Truncate/Round/Integer/Fraction Instructions for Sub-pixel Adjustment
- Separated Bussing
  - More Instructions Per Clock Cycle
  - Increased Data Sources/Destinations
The Blitzen “CPU” Design

- Customized Register File Size/Orientation
- Both Complex and Predictive Branch Logic Implemented in Separate Control Blocks and in ROM Code for Optimum Flexibility and Performance.
- Fully Scalable With No Software Impact—threading, load balancing, etc.
- Single Slice Faster than 200MHz CPU With Tuned Code
Blitzen Control Instruction

- Conditional Branch
- Next Address MSBs
- Short Branch Control
- Indirect Address Control
- Data path control signals

Total bits: 211
Blitzen Time-to-market Enhancements

- Leverage of Floating Point Core
- ROM Design Reduced Synthesis/Timing Loop--Small, fixed areas of concentration
- ROM Design Allows Low-risk Chip Turns
- Design Easily Partitioned As Micro-code
- Testability Maximized Throughout
Blitzen Products

- HP Unix Workstations
  - Visualize FX-2, FX-4, and FX-6 products
- HP PC Workstations
  - HP Kayak XW Ultimate w/Visualize FX-6 and Pentium II Xeon
  - HP Kayak XW Ultimate w/Visualize FX-4 and Pentium II
Blitzen Performance

- 624 MFLOPS/chip
- 3.3 Million Triangles/sec/chip
- 2 Million Lit Triangles/sec/chip
- 6.2 Million Vectors/sec/chip
<table>
<thead>
<tr>
<th></th>
<th>HP Kayak XW/Visualize fx6</th>
<th>HP Kayak XW/Visualize fx4</th>
<th>HP C240/Visualize fx6</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDRS-03</td>
<td>181</td>
<td>138.6</td>
<td>200</td>
</tr>
<tr>
<td>DX-03</td>
<td>26.24</td>
<td>20.1</td>
<td>28.98</td>
</tr>
<tr>
<td>DRV-04</td>
<td>18.4</td>
<td>12.7</td>
<td>16.64</td>
</tr>
<tr>
<td>Light-01</td>
<td>2.56</td>
<td>1.68</td>
<td>2.17</td>
</tr>
<tr>
<td>Awadvs-01</td>
<td>52.02</td>
<td>31.5</td>
<td>52.02</td>
</tr>
</tbody>
</table>
Blitzen Chip Facts

- 1.6 Million Transistors
- I/O Frequency 200MHz (HSTL)
- Internal Clock Frequency 156MHz
- 300 pin CPGA package
- 10% RAM
Blitzen Summary

- Need Scalable Designs--decrease R&D cost
- Leverage Where Possible--good floating point
- Customize For Significant, Measurable Performance Gains--instructions, bussing
- Simplify Without Sacrifice--Micro-code ROM for easy coding and timing closure with branch/flag logic for performance.