The ARM9E Synthesizable Processor Family

Simon Segars, CPU Development Manager
• ARM9E Design Motivation & Goals
• Technical Review
 – ARM9E Core / ARM966E / ARM946E
• Cache Architecture & Write Buffer
• Ease of Synthesis & Integration
 – Improved AMBA Bus I/F
• Enhanced Development
 – Real Time Trace / I Trace/ D Trace / Non-Stop Debug
• Conclusion
Design Motivation & Goals (1)

• Bridge DSP Chasm
 – Integrate DSP extensions into a single engine controller

• Develop Flexible Memory Systems
 – One memory size and system does not suit all applications

• Improve SoC Support Tools
 – Real Time Trace and Non-Stop Debug
Design Motivation & Goals (2)

- **Ease SoC Core Integration**
 - Synthesis friendly to ease integration of cores into SoC designs flows
 - Enable use of standard ASIC library components
 - Improve time-to-market

- **Continue Industry Leading Power Efficiency**
Technical Review

ARM9E Processor Core

- An ARM9TDMI core with DSP Extensions
- ARM9E Core Datapath
ARM9E DSP Extensions

• New 32x16 and 16x16 multiply instructions
 – SMLAxy, SMLAWy, SMLALxy, SMULxy, SMULWyx
 – Allow independent access to 16-bit halves of registers
 – Give efficient use of 32-bit bandwidth for packed 16-bit operands
 – 32x32 multiply already in ARM ISA

• Zero overhead fractional saturating arithmetic
 – QADD, QSUB, QDADD, QDSUB

• Count leading zeros instruction
 – CLZ for faster normalization and division

• Single cycle 32x16 multiplier array
 – Speeds up all ARM9E multiply instructions
- Tightly coupled instruction and data RAM - variable size up to 64M. RAM fixed in memory map to ease implementation and reduce power.
- Data interface needs access to instruction RAM for constants embedded within code.
- Write buffer to minimize system loading. Buffer controlled by system coprocessor and address decoders.
Why no cache?

• Not all applications warrant the complexities of a cache
 – Still need the performance benefits of memory closely associated to processor core

• Processor core with local memory addresses
 – Solves complexities of feeding both interfaces of Harvard processor core.
• 4 Way set associative cache - size is variable
• Protection units allow memory partitioning and attribute controls (cacheable, access permissions) for each region.
• Instruction and data address space can have 8 regions of variable size.
• Coprocessor interface for additional functionality closely coupled with processor core.
• Write buffer to minimize system loading.
Cache Architectures

- Previous cache architecture
 - Used 64 way set associative cache
 - Relied on full custom design techniques

- Synthesizable cache architecture
 - 4 way set associative cache (good compromise between performance and complexity)
 - Makes use of ASIC library components

- Cache treated as Synchronous RAM
 - Simple memory interface allows connection to ASIC library RAM cells
 - Minimizes rework as cache size changes
Minimizing Power Within the Cache (1)

- Non-sequential accesses require all TAG and RAM blocks to be accessed. This avoids a stall cycle while the TAG is accessed followed by the RAM on the next clock cycle.
- Sequential accesses do not need to access the TAG arrays. Only one RAM block is active.
 - This has greater affect for instruction accesses than data accesses.
Minimizing Power within the Cache (2)

- Large memory arrays burn large amounts of power.
- Splitting memory and using simple address decodes reduces power.
 - A memory half the size uses more than half the power of a full size memory, but is accessed only half as often.
- Splitting memory allows more efficient cache evictions.
- Helps with Data cache power efficiency.
Write Buffer

• De-couples processor core from system memory bus
 – Improves processor performance

• Previous designs used separate full custom address and data FIFOs

• Synthesizable processors use an adaptive buffer
 – Entries can be either address or data to maximize use of available storage
Adaptive Write Buffer (1)

- Each entry can be address or data
- Only start address is stored
 - Address incrementer generates sequential addresses.
Adaptive Write Buffer (2)

• Adaptive buffer makes better utilization of available storage
 – Separate address FIFO quickly fills with single writes.
 – Separate data FIFO fills with long sequential writes.
 – Adaptive buffer still has space in each case.
Ease of Synthesis

- Single rising edge clock design
- Prime deliverable is RTL code
 - Allows silicon vendors to exploit individual strengths
 - Ensures ARM compliance
 - Formal verification
 - Compliance test suite
Ease of Integration

- AMBA High-Speed Bus (AHB) Interface
 - Fully pipelined bus allowing higher operating frequencies.
 - Can operate at integer multiples of processor core clock period.
 - Supports multi-master operation.
AHB versus ASB

AHB Transfer Compared to ASB

- Clock inverted
- Full cycle pipeline
- Slaves have twice as long to generate wait
Enhanced Development
Real Time Trace & Non Stop Debug

- Enhancements for SoC Debug
 - EmbeddedICE module allows intrusive debug
 - Additions for Real Time Debug allows system operation to continue while interrogating system state.
 - Embedded Trace Module allows real time monitoring of processor execution
Trace Components

- On-chip trace port module
 - Compresses real-time trace information for instructions and data.

- Logic Analyzer
 - Collects trace information in deep trace memory.

- Debugger
 - Extracts and decompresses trace information.
 - Displays trace information linked back to source code.
Instruction (PC) Trace

- Only instruction address is required.
- To reduce bandwidth only branch address with pipeline status is required.
 - This provides the entry and exit point for every sequence of code
- To reduce bandwidth further only indirect branches need to be broadcast.
 - Destination of direct branches can be inferred from the code, e.g.

<table>
<thead>
<tr>
<th>Address</th>
<th>Code</th>
<th>Branch Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x1C</td>
<td>ADD R1, R2, R3</td>
<td>None</td>
</tr>
<tr>
<td>0x20</td>
<td>MOV R3, R4</td>
<td>None</td>
</tr>
<tr>
<td>0x24</td>
<td>BL 0x120</td>
<td>Direct</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Destination of branch can be calculated from code</td>
</tr>
<tr>
<td>0x144</td>
<td>ADD R1, R2, R3</td>
<td>None</td>
</tr>
<tr>
<td>0x148</td>
<td>MOV R3, R4</td>
<td>None</td>
</tr>
<tr>
<td>0x14C</td>
<td>MOV PC, R14</td>
<td>Indirect to 0x28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Destination of branch not known until execution</td>
</tr>
<tr>
<td>0x028</td>
<td>MOV R3, R5</td>
<td>None</td>
</tr>
</tbody>
</table>
Data Trace

- Data accesses (loads/stores) can also be recorded in the trace stream.
- An encoding in the execution status indicates a data access has been sent to the trace port.
- Not all data accesses are required, trace is limited to certain address ranges.
Non-stop debug

• Core Logic
 – Allows debugging of a system without completely stopping the processor core.
 – Enables a debugger to stop and debug one task while background interrupt routines continue to run.
 • EmbeddedICE hardware generates an exception which allows a monitor program to execute while allowing higher priority exceptions to be serviced.

• Debug Monitor Program
 – Communicates with the debug host via the debug communications channel
• Performance (limited by integer core and synthesis library)
 – > 200 MHz (0.18 micron process)
 – 160 MHz (0.25 micron process)

• ARM966ES Gate Count
 – 90K - 100K gates excluding RAM

• ARM946ES Gate Count
 – Approx. 150K gates excluding RAM
Conclusion (2)

Power Control Review

- Power management with sleep feature
- Management of memory to minimize power
 - Minimize RAM on time
 - Splitting RAM into banks minimizes size of array activated at any time
- Write buffer allows system bus to run at lower frequency without penalizing core performance
Conclusion (3)
Improving Test Coverage

- Scan insertion for processor
- Built In Self Test (BIST) for memory test
 - Flexible test architecture can be tailored to match memory architecture e.g. programmable seed values, choice of algorithm.
 - Simple programmers interface
 - Can also be activated using scan chains if desired
- ARM946E / 966E Availability: 1Q 2000