VMware’s Virtual Platform™
A Virtual Machine Monitor for Commodity PCs

Mendel Rosenblum
Chief Scientist & Founder VMware Inc.
mendel@vmware.com
http://www.vmware.com
Talk Outline

• What is a virtual machine monitor (VMM)?
• Why would you want one on your PC?
• What are the problems of doing it for a PC?
• How do we solve these problems?
• What products are available?
• Conclusions
What’s a virtual machine monitor

Virtual machines

Real machine

Virtual Machine Monitor Layer

- VMMs popular during 1970s
 - Multiplex expensive hardware (e.g. IBM’s VM)
Why on a Commodity x86 PC?

• Hardware now cheap, software expensive!
 – Multiplex expensive software on cheap HW

• Low-level general-purpose capability
 – Many different uses, problems being solved
 • Software development & testing
 • OS migration
 • Security
 • Many more
PC VMM Usage Examples

• SW development - develop, test, etc.
 Example: Run 95,98,NT,2000

• OS Migration - Perfect legacy app. support
 Example: Unix & Windows, Win98 and Win2000

• Security - Isolated environment
 Example: Fault and security isolation

• Other usage: Help desks, Multi-lingual, teaching, general freedom of choice, etc.
Challenges for PC VMMs

• Traditional VMM techniques won’t work
 – x86 architecture not strictly virtualizable

• Large hardware diversity in PC marketplace
 – Want to run on any PC not just a PC

• Need ease of installation and use
 – Can’t force user to reinstall all software, etc.
Traditional approach to VMMs

• Virtualize all resources
 – CPU, Memory, I/O devices
• Run all VM code non-privileged
 – Trap and emulate privileged operations
• Simulated virtual I/O devices by multiplexing access to real devices
x86 CPU problems

- Same opcode have different semantics in different protection rings
 - Example: POPF
- Privileged level visible to software
 - Example: MOV AX,CS or LMSW AX
- Some MMU “features” problematic
 - Cached segment descriptors; big real mode
Hardware Diversity Problem

• VMM must “understand” hardware
 – Which video card is in your PC?
 ATI, Matrox, Intel, Trident, S3, nVidia, Compaq, Dell,
 Diamond, Number Nine, Orchid, STB, ..
 – What SCSI card?
 BusLogic, Qlogic, Adaptec, NCR, UltraStor, ..
 – What LAN card?
 3COM, Intel, Digital, AMD, SMD, National, IBM,…

• Problem: Too many drivers to write
Virtualizing the x86 architecture

• x86 is “somewhat” virtualizable
• Some CPU modes can be virtualized
 If conditions are right, can use direct execution
 Most user-level code and V8086 mode code
• Only a few instruction types are problematic
 – Examples: PUSHF/POPF, privileged insts
 – Need to interpose and emulate these
Privilege code patching

pushfd
cli
mov eax,(0x824)
cmp eax,1
je 5
mov (0x900),edx
popfd
add edx,eax

<pushfd sim insts>
<cli sim insts>
mov eax,(0x824)
cmp eax,1
je 5
mov (0x900),edx
<popfd sim insts>
add edx,eax
Challenges for patching x86 inst

• Heavy use of self-modifying code in the x86 software world
• Semantics of privileged instructions are some of the less well documented ones
• Need to hide and protect the patching code in the x86 linear address space
Virtual I/O Devices

- VMM must simulate virtual I/O devices

Virtual Device Interface

I/O Device Simulator in VMM

HW Device Interface

E.g. IDE, SCSI
Hardware Diversity Problem

• Some HW is “standard” others are not

few different interfaces

problem area
Our Approach to virtual devices

- **Virtual Device Interface**
 - I/O Device Simulator in VMM
 - Convert to OS interface
 - Host OS (e.g. Windows, Linux)
 - HW Device Interface
 - E.g. IDE, SCSI
 - E.g. IDE
 - E.g. Unix, Win32
Dual-Mode Personality

Can masquerade as either a VMM or application

VMM - Direct to HW

App - Through Host OS
Dual-Mode Advantages

• Portability - Can run any OS on any HW
• VMM can use Host OS services
 – VMM easily installs like an app
 – Disk can be stored in file system, etc.
• Low impact on Host OS
 – Host OS runs at speed
 – Lowers the barriers to running multiple OSes
Other Resource Virtualization

• Virtual Physical Memory
 – Uses memory pages assigned by Host OS
 – Demand paged by the monitor
 – Active working set locked by driver
 • Driver acts like a device doing DMA

• Virtual I/O Devices
 – Some devices map to Host OS devices:
 Floppy, CDROM, sound, serial ports, parallel ports
Virtual Device Management

- **Disks**
 - Raw disk partition or file in Host OS
 - COW: Undoable or nonpersistent disks

- **UI Devs:** Video card, keyboard, mouse
 - X window or direct framebuffer access
 - With VMware tools, cut-and-paste.
Virtual Network Management

• Virtual Ethernet bridged to Host and VMs
• Can be used to share resources
 – File, printer access with Samba or NFS
• Assign an IP address to VM:
 – Access any remote service:
 Printers, file servers, etc.
Performance - Current Status

• CPU-bound workloads pretty good

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Slowdown</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPUmark32</td>
<td>8%</td>
<td>All Direct</td>
</tr>
<tr>
<td>Norton SI32</td>
<td>30%</td>
<td>All Patched</td>
</tr>
<tr>
<td>SPECint95</td>
<td>< 10% Est.</td>
<td>All Direct</td>
</tr>
<tr>
<td>SPECfp95</td>
<td>< 10% Est.</td>
<td>All Direct</td>
</tr>
<tr>
<td>Intel Media</td>
<td>2x Est.</td>
<td>Direct + Graphics</td>
</tr>
</tbody>
</table>

• Graphics-intensive a problem area
 – Can’t get at all of video card accelerations
 – Need to pass-through card to VM
Virtual Platform™ Products

• VMware for Linux™ version 1.0
 – Available from online store
 http://www.vmware.com
 – Introductory pricing
 Commercial: $199 Non-commercial: $75

• VMware for Windows NT™
 – In private beta now
Conclusion

• Virtual Platform™: VMM for a PC
 – Solves unique problems for PC VMMs:
 • x86 lack of virtualizability
 • Large I/O device diversity
 • Easy deployment

• Near future features for Virtual Platform™
 – Better Performance and Completeness
 – Checkpoint/restore
http://www.vmware.com