SiRFstar™ II ARCHITECTURE:
A POWERFUL SYSTEM PLATFORM for CONSUMER GPS APPLICATIONS

J. Knight, R. Tso, Dr. L. Peng, A. Pande, G. Turetzky
SiRF Technology Inc.
Typical SiRFstar™ II Architecture

- GPS receiver footprints as small as 1” x 0.9”
 - < 50 total parts (35 are capacitors and resistors)
 - 1/3 of area is consumed by connectors and mounting holes
- GSP2: Digital Signal Processor
 - 400K effective gates including: CPU, RAM, Custom GPS DSP, Real Time Clock and I/O
- GRF2: RF section
 - Complete RF section with no external IF
- GSW2: Software
 - Designed to integrate with User software on built-in ARM CPU
 - Low GPS Throughput (~2 MIPS)
 - Low GPS Interrupt rate (100 ms, non-time critical)
GSP2

TECHNOLOGY SUMMARY
- Vendor 50 MHz ARM7-TDMI
- 1 Mbit Vendor EDO RAM
- P substrate and Triple Wells
- 4 Polys and 4 Metals
- Dual gate oxide 70/120 A
- $\text{Leff}=0.3/0.35\text{um}$ for N/PMOS
- Custom ASIC Logic
 - at 38 & 49 MHz
 - Simulated at 2.5 to 3.7 V

GSP2 Challenges & Solutions
- Aggressive cost and size requirements - System-on-a-Chip
 - On board 50 MHz CPU and application RAM
 - Custom GSP DSP core and Satellite Signal Tracking Engine (SSTE)
 - Acquire, track, demodulate GPS signals without CPU assistance
 - Extensive GPS receiver peripherals
 - RTC, 2 UARTS, high speed serial bus, battery backed SRAM, > 40 GPIO
- Industry Leading GPS performance
 - Signal acquisition using 1920 time/frequency search channels
 - Satellite signal tracking engine to perform GPS acquisition and tracking functions without CPU intervention
 - Multipath-mitigation hardware
 - Wide Area Augmentation System (WASS) channel
 - Rate 1/2, $k=7$ convolutional decoder at 500 BPS
 - Horizontal position fix error < 10 m 2-d RMS
 - U.S. Coast Guard DGPS Beacon Signal Processor
 - Tracking loops & demodulation hardware for 300 KHz, 200 BPS MSK data
 - Horizontal position fix error < 5 m 2-d RMS
GSP2 Challenges & Solutions

- Low Power
 - High integration
 - Advanced power management for power saving and stand-by modes
 - Extreme low power in power down mode, but capable of very fast starts
 - < 350 mW continuous
 - Advanced TricklePower™ mode for power savings to 98% with no extra parts
- High Quality (> 99% effective fault coverage)
 - End-to-end simulation
 - ARM7TDMI with JTAG interface
 - EDO DRAM memory with Built-in-self-test (BIST)
 - SRAM with BIST
 - Full scan design-for-testability
 - Sample quality first spin silicon
Satellite Signal Tracking Engine (SSTE)

SSTE FEATURES
- All Acquisition / Tracking Tasks
- Reduces SW Interface to 10 Hz
- Programmable
 - Acquisition Sensitivity
 - 0.01 to 1000 Hz Search Rate
 - Loop Order
 - 1 or 2 Order AFC
 - 2 or 3 Order Costas
 - 1 or 2 Order Code
 - Loop Bandwidths
 - 0.125 to 8 Hz AFC Loop
 - 4 to 64 Hz Costas Loop
 - 0.03 to 8 Hz Code Loop
 - Data Rate
 - 50 Hz or Slower Ranges

GSP2 GPS/WAAS DSP

GSP2 DSP FEATURES
- Custom, Patented, DSP Hardware
- 1920 Acquisition Taps or
 12 Parallel 48 MHz Channels
- 2,000 MIPS (Equiv.) Throughput, Power Consumption for <48 MHz
- GPS + WAAS Capability
- Multipath-mitigation hardware < 50 ns sensitivity
- Programmable Coherent/Non-coherent Integration Capability with Signal Detection Hardware
GSP2 Performance/Current

TTFF Performance

<table>
<thead>
<tr>
<th>Mode</th>
<th>TTFF (Sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold Start</td>
<td><= 45</td>
</tr>
<tr>
<td>Warm Start</td>
<td><= 38</td>
</tr>
<tr>
<td>Hot Start</td>
<td><= 2</td>
</tr>
<tr>
<td>Reacquisition</td>
<td><= 0.2</td>
</tr>
</tbody>
</table>

Current

<table>
<thead>
<tr>
<th>Mode</th>
<th>Current @ 3.3V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>< 75 mA</td>
</tr>
<tr>
<td>Standby</td>
<td>< 1 mA</td>
</tr>
<tr>
<td>Power Down</td>
<td>< 2.5uA</td>
</tr>
<tr>
<td>TricklePower™ 1 Hz</td>
<td>< 25 mA</td>
</tr>
<tr>
<td>TricklePower™ 2 Hz</td>
<td>< 15 mA</td>
</tr>
<tr>
<td>Push-to-Fix</td>
<td>~1 mA</td>
</tr>
</tbody>
</table>

GRF2

TECHNOLOGY SUMMARY

- 6” wafers, Non-epi BiCMOS
- 3 Metal Layers
- 0.6um x 1.8 um emitter
- 0.44um CMOS, Tox=85A
- Tested at 2.7 to 3.7 V
- Input: 50 Ω, 1575.42 MHz RF
- Output: Single ended PECL, 2-bit A/S samples at 38.192 MHz with 9.548 MHz IF
GRF2 Challenges and Solutions

- **High Integration**
 - Integrated LNA
 - Noise figure < 4.5 dB
 - Minimize matching components, S11 < -15dB
 - Integrated IF Filter & Image Reject combiner
 - No external parts
 - Image Rejection > 20 dB

- **Low Cost Process / Product**
 - Fabricate in a non-epi BiCMOS process
 - Minimize die size to reduce per unit cost
 - 7mm body plastic 48-pin LQFP
 - Low cost, 20 to 30 MHz RF Filter for Broadband Noise Rejection

- **Marketing required backwards compatibility with SiRFstar I**
 - Retained sample bandwidths, sample rate and clock rates
 - 1575.42 MHz, 50Ω balanced pair input
 - 38.192 MHz, 2-bit, PECL outputs with an IF of 38.192/4 MHz

GRF2 Block Diagram
Integrated IF Filter

- **Challenge:**
 - Filter frequency setting elements R and C have +/- 15% tolerances
 - Filter center or cutoff can range from 0.75 to 1.38 times nominal
 - Filter must work over worst-case process corners

- **Approach:**
 - Sample rate Fs=38.19MHz and Sample IF = 9.548 MHz for compatibility with digital processing
 - Set IF center to Fs/4 = 9.5MHz
 - IF Filter image rejection at 3/4 Fs.
 - IF filter rejection = \([\text{Gain}@9.5MHz]/\text{Gain}@28.5MHz\)]

![Diagram](image1.png)

- **Top trace:** IF Filter frequency response
- **Bottom trace:** RF Image Reject response
GRF2 LNA Performance

- **Noise Figure (up to ADC)**
 - Front end noise figure NF < 4.5dB for normal Vcc operating range

- **RF Input Return Loss**
 - S11 @ 1.575GHz < -20dB without ext. matching elements

GSW2 Software Organization

- **Background**
- **User Interface**
- **I/O**
- **Receiver Manager**
- **Tracker**
- **ASIC Interface**
- **Interrupt Service**
- **Navigation**

START-UP

Asynchronous

1 Hz

10 Hz

10 Hz

Object Code Provided

Source Code Provided

Source Code Provided
GSW2 Software Features

◆ > 90% of throughput available to user software
 – 2 MIPS used by GSW2

◆ Low Rate CPU interrupts
 – 100 ms non-time critical interrupt rate
 – Easy to integrate with User’s application software

◆ Flexible Operating Systems
 – User supplied OS or SiRF minimalist OS
 – GPS can schedule User Tasks (GPS Major)
 or User Tasks can schedule GPS (GPS Minor) at low priority
 – “Stub” tasks provided for 1ms, 10 ms, 100 ms and 1s User Functions

◆ Flexible I/O System Source Code Provided
 – Users can easily implement own I/O messages and protocols