Towards quantum computation: a 215 Hz 5-qubit quantum processor

Isaac Chuang

Lieven Vandersypen, Matthias Steffen, Gregory Breyta, Costantino Yannoni, and Richard Cleve

IBM Almaden Research Center

Copyright © 2000, I. Chuang
Classical Computers

Difference Engine (1879)
The Quantum Limit

What happens when 1 bit = atom?

1879
1 inch

1986
1 micrometer

2020
1 nanometer
Quantum Computation?

1. Classical computers can be reversible

 n bit computation = permutation on 2^n states

2. Quantum computation: replace

 bits → two level quantum systems
 permutations → unitary transformations

Facts:
- Quantum computation subsumes classical
- Certain problems can be solved faster with QC
- 2, 3, and 5 "qubit" QC’s have been experimentally realized
Computation is Reversible!

(Bennett 1973; Feynman 1982)

Billiard ball collisions may be used to build logic gates

- Newton’s laws are microscopically reversible
- Energy dissipation required only for stability
Classical \rightarrow Quantum

- **States:** 0, 1
- **Gates:**

<table>
<thead>
<tr>
<th>In</th>
<th>Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>01</td>
<td>01</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>10</td>
</tr>
</tbody>
</table>
Classical \rightarrow Quantum

- States: $0, 1$
- Gates:
- Hadamard:

\[F = ma \]

\[|0\rangle, |1\rangle \]

\[\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \]

\[\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \]

\[i\hbar \frac{d}{dt} |\psi\rangle = H |\psi\rangle \]

Newton’s laws Schrödinger’s Eq.
Quantum Parallelism

| 0 ⟩ → | H ⟩ → \frac{1}{\sqrt{2}} | 0 ⟩ + \frac{1}{\sqrt{2}} | 1 ⟩

| 00 ⟩ → | H ⟩ → \frac{1}{\sqrt{4}} (| 00 ⟩ + | 01 ⟩ + | 10 ⟩ + | 11 ⟩)

f(000) + f(001) + f(010) + ... + f(111)

Exponential resource?
Quantum Parallelism

Measurement

\[f(000) + f(001) + f(010) + \ldots + f(111) \]

\[f(000) \text{ or } f(001) \text{ or } f(010) \text{ or } \ldots \text{ or } f(111) \]

each with probability 1/8

Superpositions collapse on measurement.
Theoretical Promise

ULTRAFAST COMPUTATION
(Shor, Grover, 1994-1996)

Factoring Integers
- \(N = pq \)
- \(L \) digits numbers
- Given \(N \), what is \(p \) and \(q \)?

\(O(e^{L^{1/3}}) \) \(\rightarrow \) \(O(L^3) \)
10 billion years
400 digits
3 years

Searching Databases
- Unordered list of \(N \) items
- Find an item: how many queries?

\(O(N) \) \(\rightarrow \) \(O(\sqrt{N}) \)
1 Month
27 minutes
Experimental Challenge

- Quantum systems typically have short lifetimes
- External control of quantum dynamics is difficult

Ion Trap
- Single electromagnetically trapped Be^+ ion cooled to below 1 nano Kelvin

Nonlinear Optics
- Single photons incident on a single atom falling through a cavity with 99.999% reflectivity mirrors

Quantum Dots
- Confined electrons in artificial atom
Bulk Spin-Resonance Quantum Computation

(Gershenfeld and Chuang, Science 275, p.350, 1997
Cory, Fahmy, and Havel, PNAS 94, p.1634, 1997)

Information (qubits) = Nuclear spins
Interactions = Chemical bonds
Circuits = Electromagnetic field pulses
First Implementation: Quantum Algorithm

• Given $f(x)$: Calculate $f(0) + f(1)$ (ONE function evaluation)

$$f(0) + f(1) = 1$$

$$f(0) + f(1) = 0$$
Demonstration of Fast Quantum Search

(Grover, 28th ACM Symposium on Theory of Computation, 1996)

Classical search: \[\# \text{ trials} = \frac{1+2+3+3}{4} = 2.25 \]
Demonstration of Fast Quantum Search

Quantum combination lock

2 qubits

3 qubits

~250 Q. logic gates!

Quantum search: ONE trial

$O(N) \rightarrow O(\sqrt{N})$
NMRQC Molecules

Fast Grover Search

QEC

Simple H.O.

Logical labeling / Grover

Teleportation

Q. Error Correction
A 5-qubit Problem

- Given a permutation \(\pi(y) \):

 Calculate \(r \) such that \(\pi^r(y) = y \)

- This problem is hard! If \(y \in \{0, 1\}^n \) then \(O(2^n) \) trials are required, classically.

- Quantum: \(O(n) \) trials
5 qubit 215 Hz Q. Processor

(Vandersypen, Steffen, Breyta Yannoni, Cleve, and Chuang, 2000)

- The Molecule

- Quantum Circuit

$T_2 > 0.3$ sec; ~ 200 gates
Solid State Spin QC?

- Nuclear spins of ^{31}P in Si
 (Kane, Nature 393, p133, 1998)

- Cooper pairs with Josephson Junctions
 (Nakamura, Nature 398, p. 786, 1999)

- Electron spins with SiGe FET's
 (Yablonovitch, quant-ph 9905096)

Status: Concept, No Prototypes
Summary

- Quantum computation and quantum information:
 - New ways to view the physical world around us, in terms of algorithms and information processing
 - How do physical systems represent and process information?