The SB-1™ Core:
A High Performance, Low Power MIPS64™ Implementation

David Kruckemyer
Principal Engineer
SiByte, Inc.

Hot Chips 12
August 15, 2000
www.sibyte.com
SiByte Background

- Semiconductor Supplier for Networking and Communications Infrastructure
 - High Performance, Low Power, Integrated SOC Solutions

- World’s best design capabilities for High Performance, Low Power VLSI
 - Processor, System, and Software Design Experience

- Marketing and sales expertise in embedded networking and communications markets
SB-1 Design Goals

- **Industry Standard ISA**
 - Existing Tool and Application Support

- **Server-class Performance**
 - Highest Embedded Processor Performance

- **Embedded-class Power Consumption**
 - Highest Performance/Watt in its Performance Class

- **Chip Multiprocessor (CMP) Support**
 - Full MP Coherency
 - High Bandwidth Bus Interface
 - Scalable Performance

- **Design Re-use and Flexibility**
 - Building block for multiple generations of SiByte SOCs
SB-1 High Level Spec

<table>
<thead>
<tr>
<th>ISA</th>
<th>MIPS64, MIPS-3D™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>600MHz – 1GHz</td>
</tr>
<tr>
<td>Microarchitecture</td>
<td>In-order Quad Issue (Dual ALU/FP, Dual Memory)</td>
</tr>
<tr>
<td>Branch Prediction</td>
<td>BHT, JRC, RAS</td>
</tr>
<tr>
<td>Instruction Cache</td>
<td>32KB, 4-Way Set Associative</td>
</tr>
<tr>
<td>Data Cache</td>
<td>32KB, 4-Way Set Associative</td>
</tr>
<tr>
<td>TLB</td>
<td>64 x 2 Entries</td>
</tr>
<tr>
<td>MP Support</td>
<td>Fully Coherent MESI Protocol</td>
</tr>
<tr>
<td>Process Technology</td>
<td>0.15 micron</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>1.2 Volts</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>~2.5 Watts at 1GHz</td>
</tr>
<tr>
<td>Estimated Die Area</td>
<td>~25mm2</td>
</tr>
</tbody>
</table>
SB-1 MIPS64 ISA

- **MIPS64**
 - Unified 64/32-bit Application ISA
 - Embedded Application Instructions
 - Standardized Privileged Resource Architecture
 - Paired Single Floating Point

- **MIPS-3D**
 - 3D-Graphics Instructions
 - RECIP/RECIPSQRT Approximations
 - Specialized Branches
SB-1 Instruction Fetch

- Four Instructions Fetched Per Cycle
- Advanced Branch Prediction
 - 4K-entry Gshare Direction Predictor
 - 64-entry Indirect Jump Cache
 - 8-entry Return Address Stack
- Up to Two Branch Predictions each Instruction Fetch
SB-1 Decode/Issue

- **Instruction Queue**
 - Stores up to 24 decoded instructions
 - Decouples Fetch engine from Issue stalls

- **Maximum of Four Instructions Issued**
 - Mix of two Integer or FP instructions
 - Mix of two Load or Store instructions

- **IQ Serves as a Replay Buffer**
 - Eliminates pipeline stalls
SB-1 Load/Store Unit

- Two Loads/Stores Per Cycle
- Simple 64-bit ALU
 - Adds, Subtracts, and Logical Instructions
- Non-Blocking Data Cache
 - 8 Outstanding Cacheline Misses
 - Request Merging
- Full Prefetch Support
SB-1 Integer Unit

- Two 64-bit ALU Execute Units
 - 1-Cycle Execution Latency for Most Instructions
- Branch Evaluate Unit
- Integer Multiply/Divide Unit
 - Fully-Pipelined, 3-Cycle MADD
 - Complete 64-bit Integer Multiply and Divide
- 4 BOPS Peak
SB-1 Floating Point Unit

- Two Double Precision FP Execute Units
 - 4-Cycle Execution Latency
 - Fully-Pipelined
- IEEE 754 Compliant
- Paired Single Instruction Support
- 4 SP MADDs/Cycle, 8 SP GFLOPS

Fetch1 Fetch2 Decode Issue S1 S2 Read Exe1 Exe2 Exe3 Exe4 Write

Execute
SB-1 Pipeline Highlights

◆ **Load Data Forwarding**
 – Zero Cycle Load-to-Use Delay
 – High Performance
 – Simple Implementation

◆ **Simple Load/Store Unit ALU**
 – Early Address Generation for Loads and Stores
 – Dependent Integer Operations may be issued simultaneously
Zero Cycle Load-to-Use

LD r1, 0(r2)

DADD r4, r1, r3

LD r5, 8(r2)

DADD r7, r1, r5
SB-1 Performance/Power

- Server-class Microprocessor Performance at Embedded Processor Power

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dhrystone 2.1 MIPS</td>
<td>> 2000 MIPS, > 800 MIPS/Watt</td>
</tr>
<tr>
<td>Peak Integer Ops</td>
<td>4 Ops/Cycle, 4 BOPS Peak</td>
</tr>
<tr>
<td>Peak FP Ops</td>
<td>8 Ops/Cycle, 8 GFLOPS Peak</td>
</tr>
</tbody>
</table>
SB-1 Low Power Design

- **Low V_{dd}**
 - 1.2 Volts
 - 36% Power Savings vs. 1.5 Volts

- **Extensive Use of Clock-Gating**
 - 30% Power Savings

- **Flip-Flop-Based Design**
 - Saves Power vs. Latch-based Designs
 - Estimated 10% Power Savings

- **Mostly Static Logic**
 - Selective Use of Dynamic Logic (5 - 10% Savings)

- **Optimized Layout**
SB-1 MP Support

- **CMP-Ready Core**
 - Fast, Fully-Coherent, Split Transaction, MP Bus Interface
 - Total Bus BW:
 - 16 GB/Sec

- **Load Linked, Store Conditional Support**

- **Snoop Support**
 - Duplicate L1 Tags
SB-1 Summary

✓ High Performance MIPS64 CPU Core
 > 2000 Dhrystone 2.1 MIPS
 8 GFLOPS Peak FP Performance

✓ Low Power in a Small Die Area
 ~2.5 Watts at 1GHz in 25mm²
 > 800 MIPS/Watt

✓ Support for Chip Multiprocessing
 Full MP Coherency with Snoop Tags
 16 GB/Sec Bus Bandwidth

✓ Foundation for Multiple SOCs