The Au1000™ Internet Edge Processor: A High Performance, Low Power SOC

The First Chip in a Family of Parts from Alchemy Semiconductor, Inc.

Suzanne Plummer

Hot Chips 2000
Agenda

- Design Goals
- High Performance Microarchitecture Highlights
- Low Power Microarchitecture Enhancements
- System Bus Structure / Coherency
- Peripherals / Integration Strategy
- Summary
Design Goals

- Design Goal: Highest Performance at .5W
- Design Goal: Industry Standard Architecture
 - MIPS Architecture License
 - Developed own microarchitecture and implementation
 - First in a family of parts
- Design Goal: Low Cost Production
 - Custom Core
 - Custom Cell Libraries for Synthesis
 - Portable Design and Layout Rule Set
 - Au1000 produced in standard TSMC .18µ LV Process
- Design Goal: Time to Market
 - Purchased IP Blocks
 - Optimal Circuit Design for time to market
Au1000 SOC

- LCD Controller
- PCMCIA
- Flash
- SRAM
- ROM
- X-Bus

SDRAM Controller
- Enhanced MIPS32 CPU
- IMMU
- Bus Unit
- 16KB I-Cache
- 16KB D-Cache

SRAM Controller
- System Bus
- Peripheral BUS IF
- RTC (2)
- Power Mgmt
- SSP
- SPI
- AC97 Link

Peripheral Bus
- Fast IRDA
- EJTAG
- DMA Controller
- Ethernet MAC
- Ethernet MAC
- USB – Host
- USB-Device
- Interrupt Control
- GPIO (6-32)
- I2S
- UART (4)
AU1000 ISA & Privileged Instructions

- Compliant with the MIPS32 standard
- MIPS II R3000 integer instructions
- New Instructions
 - Multiply-add and Multiply subtract
 - Targeted multiply
 - Count Leading Zeroes/Count Leading Ones
 - Wait
 - Conditional move
 - Prefetch
- R4000 MMU and Privileged Architecture
Au1 Core 5-Stage Pipeline

<table>
<thead>
<tr>
<th></th>
<th>Fetch</th>
<th>Issue</th>
<th>Execute</th>
<th>Cache</th>
<th>Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALU</td>
<td>I$ Reg Decode</td>
<td>Reg File Read</td>
<td>ALU</td>
<td>BUF</td>
<td>Reg File Write</td>
</tr>
<tr>
<td>MEM</td>
<td>I$ Reg Decode</td>
<td>Reg File Read</td>
<td>Fast Disp Add</td>
<td>TLB Tag Access</td>
<td>D$ Data Access</td>
</tr>
</tbody>
</table>

- Pipelined register file access into fetch stage
- Load/Store Effective Addr computed in I-stage
 - Gives cache two cycle access
Au1 Core Load Pipeline Example

<table>
<thead>
<tr>
<th>Fetch</th>
<th>Issue</th>
<th>Execute</th>
<th>Cache</th>
<th>Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetch</td>
<td>Issue</td>
<td>Fast Disp Add</td>
<td>TLB</td>
<td></td>
</tr>
<tr>
<td>LUI</td>
<td>imm</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LUI \(r1, \) \(\text{imm} \)

LW \(rt, \) \(\text{offset} \) \((r1) \)
Zero Penalty Branch

<table>
<thead>
<tr>
<th>Fetch</th>
<th>Issue</th>
<th>Execute</th>
<th>Cache</th>
<th>Write</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD R3, Fetch</td>
<td>Issue</td>
<td>Execute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BEQ R3, Fetch</td>
<td>Issue</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADD Delay Slot Fetch</td>
<td>Fetch</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LW Fetch</td>
<td>Branch Target</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
High Performance MicroArchitecture Highlights

- Caches
 - 16K, Four-Way Set Associative Non-Blocking Data Cache
 - 16K, Four-Way Set Associative Instruction Cache
 - Write-back Cache
 - Allocate on Reads
 - Cache Line Locking Support
 - 32 Byte Line Size
 - Physically Tagged
 - Hit-under-miss in Data Cache
High Performance MicroArchitecture Highlights

- **Cache Management Features**
 - Programable Set Allocation Policy controlled by Page attribute
 - Line Locking
 - Prefetch Instructions (Instruction and Data)
- **Low Latency Access to on-chip buses**
- **Cache Coherency**
 - Coherent DMA support
 - Snooping for MP support
 - MESI protocol implemented
High Performance MicroArchitecture Highlights

◆ MMU
 – Hardware support for Software Breakpoints
 – Separate Interrupt Exception Vector
 – TLB
 ♦ 32 dual-entry fully associative
 ♦ Variable page sizes 4KB - 16MB
 ♦ 4 Entry ITLB

◆ Write Buffer
 – 16, 32-bit entries
 – Byte Merging and Word Gathering
High Performance MicroArchitecture Highlights

◆ Multiply-Accumulate (MAC) Hardware
 – One 32x16 MAC per Clock
 – One 32x32 MAC per Every Other Clock

◆ EJTAG
 – CPU Control with Start, Stop and Single stepping
 – Software Breakpoints via the SDBBP Instruction
 – Test Access Port Facilitates Download of Application Code
Low Power Microarchitecture Enhancements

- Aggressive use of Conditional Clocking
- 4-way associative data cache without requiring 4 data accesses
- No Speculative Execution
- Full speed Branches without Prediction
Low Power Microarchitecture Enhancements

- Pseudo-static design to 0 Hz
- Low Power modes
 - Idle1 – Clocks turned on to snoop system bus
 - Idle2 – Clocks not turned on for snoops
 - Sleep – Power down core
- Minimize Leakage with low power cell libraries
- Minimum VDDi at 1 V (approx)
- 3.3V I/O
Power Estimates

<table>
<thead>
<tr>
<th>Power Mode</th>
<th>Operating Conditions</th>
<th>Estimated Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>1.25V, 200MHz</td>
<td><200mW</td>
</tr>
<tr>
<td></td>
<td>1.5V, 400MHz</td>
<td>500mW</td>
</tr>
<tr>
<td></td>
<td>1.8V, 500MHz</td>
<td>900mW</td>
</tr>
</tbody>
</table>
Au1 Core + System Bus

LCD Controller
PCMCIA
Flash
SRAM
ROM
X - Bus

SDRAM Controller

Peripheral BUS IF
RTC (2)
Power Mgmt
SSP
SPI
AC97 Link

System Bus

SDRAM

Fast IRDA
EJTAG
DMA Controller
Ethernet MAC
Ethernet MAC
USB – Host

Peripheral Bus
USB-Device
Interrupt Control
GPIO (6-32)
I2S
UART (4)
Alchemy System Bus

- 36-bit address bus
 - Additional address space to support bridges to external buses
- Connect through defined transceiver interface
- Bus clock ratios from 1/2 to 1/5 of core frequency.
Alchemy System Bus - Coherency

- Coherency Options
 - Nothing — force software to handle
 - Retry and push out to slow memory and re-read
 - Intervention — fastest device supplies data

- Alchemy System Bus Coherency Support
 - Intervention policy for high performance sharing
 - Supports multiple CPUs
 - DMA needs no extra logic to participate in data sharing
Intervention

DMAX/I/O Device

CPU

Memory

Read request

Supply data

Intervention reply

Line in memory not updated
Au1000 SDRAM Controller

- Tightly coupled SDRAM interface
 - Supports System Bus intervention protocol
- 32-bit interface
- 100 MHz SDRAM
- 3 software configurable chip selects allowing contiguous memory with different sizes and no adders
- ½ speed of system bus
- Low Latency SDRAM access
- Four open banks per chip select
Au1000 Static Controller

- Supports SRAM, Flash, ROM, and Page Mode ROM
 - Supports System Bus intervention protocol
- Supports 32- and 16-bit devices
- 4 chip selects
- Address and data lines can be used to control PC Card/Compact Flash, LCD, and external bus interfaces
Au1000 System Bus Peripherals

◆ USB Host Controller
 – Compliant with USB Protocol Revision 1.1
 – OHCI 1.0 Compliant

◆ DMA
 – 8 channel general purpose DMA controller for simple serial line support

◆ IrDA
 – Supports DMA, transmit and receive FIFOs, CRC and PHY layer
 – 4 Mb/sec

◆ Ethernet
 – 2 x 10/100 Ethernet MAC devices
 – Dedicated DMA controller
 – IEEE 802.3, 802.3u, 803.3x spec compliance
 – Full and Half duplex
Au1000 SOC

LCD Controller
PCMCIA
Flash
SRAM
ROM
X - Bus

SDRAM Controller

Enhanced MIPS32 CPU

DMMU

32 x 16 MAC

DMMU

16KB D-Cache

SDRAM

System Bus

Peripheral BUS IF

RTC (2)

Power Mgmt

SSP

SPI

AC97 Link

Fast IRDA

EJTAG

DMA Controller

Ethernet MAC

Ethernet MAC

USB – Host

USB-Device

Interrupt Control

GPIO (6-32)

I2S

UART (4)
Au1000 Peripheral Bus

- Peripheral Bus
 - Low latency access to simple peripherals
 - Allows I/O system access times to scale with CPU speed
 - Connect through defined transceiver interface
Au1000 Simple Peripherals

- **Interrupt Controller**
 - 2 interrupt controllers each supporting 32 interrupt sources
 - WAKEUP or CPU Interrupt

- **USB Device Controller**
 - Compliant with USB Protocol Revision 1.1

- **GPIO**
 - 2 x 32 port GPIO devices
 - 32 maximum
 - 6 dedicated pins
 - 26 shared pins
Au1000 Simple Peripherals

- **UART**
 - 4 UARTs
 - One UART supports modem Controls
- **SPI / SSP Serial Interfaces**
 - Two Additional for either SPI or SSP support
- **I2S Controller**
 - 3 or 4 line serial interface to Audio Codec
 - Philips spec compliant
- **AC97 Controller**
 - 4 line serial interface to AC97 Codec
Summary

- High Performance
 - 2X more performance than synthesized designs
 - 18 to 24 month time to market advantage in performance

- Low Power — Longer Battery Life
 - 3 – 5X more power efficient
 - 10X better standby efficiency: Designed for low leakage

- Integration — Lower System Cost
 - “Cut and paste” chip layout