Crusoe Power Management:

Cutting x86 Operating Power
Through LongRun

Marc Fleischmann
Director, Low Power Programs
Transmeta Corporation

Crusoe, LongRun and Code Morphing are trademarks of Transmeta Corp.
Pentium, Pentium Pro, Pentium II and Pentium III are registered trademarks of Intel Corp.
Overview

🔗 Key Challenges for Mobile Computing
- "Portability" (weight) and "Ease of Use" (battery life)
- Power consumption is the key limiting factor

🔗 Solution - Crusoe Processor
- Full compatibility with x86 power management model
- Significantly lower power

🔗 LongRun
- Transmeta’s new invention to drive power savings
 - Adaptive Power Control (performance on demand)
 - Advanced Thermal Control (thermal budget expansion)
Power Density
The Fundamental Problem

Not too long to reach
Nuclear Reactor

Surpassed
Hot Plate

Pentium III®
Pentium II®
Pentium Pro®
Pentium®
i386
i486

W/cm²

1000
100
10
1

“Time”

Source: Fred Pollack, Intel. New Microprocessor Challenges in the Coming Generations of CMOS Technologies, Micro32
X86 Power Management States

A Quick Primer

<table>
<thead>
<tr>
<th>State</th>
<th>Description</th>
<th>Mobile x86 Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal (C0)</td>
<td>The CPU is actively executing instructions.</td>
<td>14.0 / 8.0</td>
</tr>
<tr>
<td>AutoHALT (C1)</td>
<td>CPU executes a low power instruction (x86: HLT).</td>
<td>1.7 / 1.1</td>
</tr>
</tbody>
</table>
| Quick Start (C2)| - CPU kills internal clocks (driven by South Bridge via STPCLK#).
| | - CPU maintains cache coherence (caches must be snooping). | 1.3 / 0.8 |
| Deep Sleep (C3)| - South Bridge kills external clock input to the CPU.
| | - Maximum power savings w/o losing CPU context.
| | - System enforces cache coherence (caches don’t need to snoop). | 0.5 / 0.3 |

ACPI Definition
Advanced Communication and Power Interface Specification

Mobile x86 Solution
Processor
- 650 / 500 MHz
- 1.6 / 1.35 V
The Solution - Increase Efficiency

\[P_{\text{ower}} = C_{\text{apacitance}} \times V_{\text{oltage}}^2 \times F_{\text{requency}} \]

- Transmeta Innovation - Code Morphing Software (CMS)
- Effect - Replace Millions of Logic Transistors with Software
 - … and transistors translate into capacitance
- Benefit - Significantly Reduces Power Consumption of x86 Power States
LongRun Adaptive Power Control
Maximize Battery Life With Performance on Demand

\[\text{Power} = c \times v^2 \times f \]

- Dynamically adapt both frequency and voltage to performance demands
- Mechanisms in hardware
 - Fully programmable
- Policies in CMS
 - Adapt \(f \) to demand
 - Reduce \(v \) proportionally
 - Cubic power savings!

\[
\begin{array}{ccccccccc}
\text{Normal} & 12.5\% & 25.0\% & 37.5\% & 50.0\% & 62.5\% & 75.0\% & 87.5\% \\
\hline
\text{SDR} & 0.5 & 0.4 & 0.4 & 0.3 & 0.2 & 0.2 & 0.2 \\
\text{DDR} & 0.5 & 0.4 & 0.4 & 0.3 & 0.3 & 0.3 & 0.3 \\
\text{Core+NB} & 5.5 & 3.8 & 2.3 & 1.7 & 1.3 & 1.0 & 1.0 \\
\end{array}
\]

Cubic: Core + Northbridge
Linear: I/O (DDR, SDRAM)

- 133 MHz, 3.3 V
- 125 MHz, 2.5 V
- 633 MHz, 1.6 V
LongRun Adaptive Power Control vs. Traditional Power Management

<table>
<thead>
<tr>
<th>Idle Time</th>
<th>Normal</th>
<th>12.5%</th>
<th>25.0%</th>
<th>37.5%</th>
<th>50.0%</th>
<th>62.5%</th>
<th>75.0%</th>
<th>87.5%</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>LongRun</td>
<td>6.0</td>
<td>4.2</td>
<td>2.7</td>
<td>2.0</td>
<td>1.6</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>C3</td>
<td>6.0</td>
<td>5.3</td>
<td>4.5</td>
<td>3.8</td>
<td>3.0</td>
<td>2.3</td>
<td>1.5</td>
<td>0.8</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Notes
1. Power numbers include Northbridge
2. DDR-only configuration

12th Hot Chips Symposium - August 15, 2000
LongRun Adaptive Power Control
Crusoe Power Profile

<table>
<thead>
<tr>
<th>Idle Time</th>
<th>Normal</th>
<th>12.5%</th>
<th>25.0%</th>
<th>37.5%</th>
<th>50.0%</th>
<th>62.5%</th>
<th>75.0%</th>
<th>87.5%</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power [W]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TM5400</td>
<td>6.0</td>
<td>4.2</td>
<td>2.7</td>
<td>2.0</td>
<td>1.6</td>
<td>1.2</td>
<td>0.8</td>
<td>0.4</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Notes
1. Power numbers include Northbridge
2. DDR-only configuration

12th Hot Chips Symposium - August 15, 2000
The LongRun Effect
Power Profiles

<table>
<thead>
<tr>
<th></th>
<th>A/C</th>
<th>Conventional</th>
<th>Mobile x86</th>
<th>Multimedia (DVD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>650 MHz, 1.6 V</td>
<td>500 MHz, 1.3 V</td>
<td>633 MHz, 1.6 V</td>
<td></td>
</tr>
<tr>
<td>Battery</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power Profiles</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>The LongRun Effect</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Power</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>[W]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Normal</th>
<th>12.5%</th>
<th>25.0%</th>
<th>37.5%</th>
<th>50.0%</th>
<th>62.5%</th>
<th>75.0%</th>
<th>87.5%</th>
<th>C3</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM5400+NB</td>
<td>6.0</td>
<td>4.2</td>
<td>2.7</td>
<td>2.0</td>
<td>1.6</td>
<td>1.2</td>
<td>0.8</td>
<td>0.4</td>
<td>0.0</td>
</tr>
<tr>
<td>A/C</td>
<td>16.0</td>
<td>14.2</td>
<td>12.4</td>
<td>10.6</td>
<td>8.8</td>
<td>6.9</td>
<td>5.1</td>
<td>3.3</td>
<td>1.5</td>
</tr>
<tr>
<td>Battery</td>
<td>16.0</td>
<td>14.2</td>
<td>12.4</td>
<td>10.6</td>
<td>8.8</td>
<td>6.9</td>
<td>5.1</td>
<td>3.3</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Notes
1 Power numbers include Northbridge
2 DDR-only configuration
System Architecture

Standard Applications
No changes required

Standard Operating System
No changes required

Standard BIOS
No changes required

Crusoe TM5400 processor featuring Transmeta LongRun technology
Code Morphing software monitors system activity and dynamically adapts LongRun performance levels
Performance on Demand
Duty Cycle Effective Performance Level

Performance

630 MHz
330 MHz
Sleep

Power

6.0 W
1.5 W
50mW
40mW

LongRun:
< 50% frequency reduction

50% duty cycle
Residual Sleep states

LongRun:
> 50% power reduction

Normal Sleep

LongRun: Low voltage Sleep
Transition Dynamics
Fast Frequency/Voltage Scaling

Pseudo Deep Sleep: < 20 µs

~ 20 µs per step

1.5 V

1.3 V

0 µs

100 µs

Frequency

Voltage

Time

CMS/LongRun policy decision

LongRun scales voltage asynchronously
Stepping: > 1.3 V: 50mV, < 1.3 V: 25 mV; max. ramping time: < 300 µs (1.6V to 1.1V)

Crusoe resumes x86 execution

LongRun trips clock change

Fast Frequency/Voltage Scaling
Transition Details
Voltage Scaling

- TM5400 Core Voltage is Fully Under Software Control
 - CMS directly controls voltage regulator pins (via internal processor register)
 - OEM configurable
 - CPU output pin/voltage mapping
 - Voltage settling interval
- CMS Schedules Interrupts to Asynchronously Ramp Voltage
 - Allows sustained x86 forward progress during voltage ramping
Transition Details
Frequency Scaling - Establish/commit control

<table>
<thead>
<tr>
<th>Clock Control</th>
<th>Shadow Clock Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core: 400 [MHz]</td>
<td>Core: 400 [MHz]</td>
</tr>
<tr>
<td>PCI: 33 [MHz]</td>
<td>PCI: 33 [MHz]</td>
</tr>
<tr>
<td>DDR: 100 [MHz]</td>
<td>DDR: 100 [MHz]</td>
</tr>
<tr>
<td>SDR: 66 [MHz]</td>
<td>SDR: 66 [MHz]</td>
</tr>
<tr>
<td>Commit: 0</td>
<td>Commit: 0</td>
</tr>
</tbody>
</table>

Enable

PSR Data

 PLL Counter

Wake event

Control Logic

Global Clock Enable
Programming Interface
Processor and Northbridge

Adaptive Power Control
CPU interface

<table>
<thead>
<tr>
<th>CPUID 8086 0001h</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EDX:0</td>
<td>LongRun supported</td>
</tr>
<tr>
<td>ECX</td>
<td>Nominal core frequency</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CPUID 8086 0007h</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EAX</td>
<td>Current core frequency</td>
</tr>
<tr>
<td>EBX</td>
<td>Current core voltage</td>
</tr>
<tr>
<td>ECX</td>
<td>Current performance percentage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MSR 8086 8010h</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>EDX</td>
<td>Upper boundary (% of max. performance)</td>
</tr>
<tr>
<td>EAX</td>
<td>Lower boundary (% of max. performance)</td>
</tr>
</tbody>
</table>

Advanced Thermal Control
Northbridge interface

<table>
<thead>
<tr>
<th>Function 0, Register A8h</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bit 4</td>
<td>Thermal Management enabled</td>
</tr>
<tr>
<td>Bit 1:3</td>
<td>Power reduction level</td>
</tr>
<tr>
<td>Bits</td>
<td>Mode</td>
</tr>
<tr>
<td>000</td>
<td>Reserved</td>
</tr>
<tr>
<td>001</td>
<td>Reserved</td>
</tr>
<tr>
<td>010</td>
<td>75.0%</td>
</tr>
<tr>
<td>011</td>
<td>62.5%</td>
</tr>
<tr>
<td>100</td>
<td>50.0%</td>
</tr>
<tr>
<td>101</td>
<td>37.5%</td>
</tr>
<tr>
<td>110</td>
<td>25.0%</td>
</tr>
<tr>
<td>111</td>
<td>12.5%</td>
</tr>
</tbody>
</table>

| Bit 0 | LongRun supported |
Energy Efficiency
Superior Performance in Small Form Factors

CPUmark99

Power [W]

All-Day Computing

Crusoe TM5600

Conventional Mobile x86

Battery

Active (fan)

Passive

Cooling Barrier

A/C

Superior Performance in Small Form Factors

16th Hot Chips Symposium - August 15, 2000
The LongRun Advantage
DVD Playback - Performance on Demand
Power Comparison

Substantial Power Reduction, Delivered by Crusoe

Conventional Mobile x86 Solution

<table>
<thead>
<tr>
<th>Mode</th>
<th>Processor</th>
<th>North Bridge</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal (C0)</td>
<td>650 / 500 MHz</td>
<td>3.3 V</td>
<td>650 / 500 MHz</td>
</tr>
<tr>
<td></td>
<td>1.6 / 1.35 V</td>
<td></td>
<td>1.6 / 1.35 V</td>
</tr>
<tr>
<td>AutoHALT (C1)</td>
<td>1.7 / 1.1</td>
<td>2.0</td>
<td>3.7 / 3.1</td>
</tr>
<tr>
<td>Quick Start (C2)</td>
<td>1.3 / 0.8</td>
<td>2.0</td>
<td>3.3 / 2.8</td>
</tr>
<tr>
<td>Deep Sleep (C3)</td>
<td>0.5 / 0.3</td>
<td>~1.0</td>
<td>1.5 / 1.3</td>
</tr>
</tbody>
</table>

Crusoe TM5400 Integrated North Bridge

<table>
<thead>
<tr>
<th>Mode</th>
<th>LongRun</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>633 / 300 MHz</td>
</tr>
<tr>
<td></td>
<td>1.6 / 1.2 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.5</td>
</tr>
<tr>
<td>0.9</td>
</tr>
<tr>
<td>0.6</td>
</tr>
<tr>
<td>0.05</td>
</tr>
</tbody>
</table>

Crusoe plays Soft-DVD at the same power that conventional mobile x86 processors use in Deep Sleep!
The LongRun Advantage
DVD Playback - Thermal Comparison

Conventional Mobile x86 Processor

- **105.5° C**
- **221.9° F**
- Active thermal solution required
 (Fan or overload protection)

Crusoe TM5400 Processor with LongRun

- **48.2° C**
- **118.8° F**
- Passive thermal solution
 (No fan or overload protection)
Summary

- **Crusoe Supports the x86 Power Management Model with Significantly Reduced Power Consumption**
 - Sleep: $4 \times (C1) - 30 \times (C3)$ power savings

- **Crusoe Leverages Code Morphing Software to Drive Performance on Demand - LongRun**
 - Normal: $2 \times - 10 \times$ power savings

- **Crusoe Leverages LongRun to Expand the Thermal Budget**

- **Crusoe’s Innovative Low-Power Technology Portfolio**
 - Enables a whole new class of battery-powered devices
 - The full PC and Internet experience - Anywhere and Anytime