The iFlow Address Processor™
Forwarding Table Lookups using Fast, Wide Embedded DRAM

Mike O’Connor - Director, Advanced Architecture
Forwarding Table Lookups

One key component of routing an IP packet is the forwarding table lookup of the destination address
» Uses Classless Inter-domain Routing (CIDR) protocol
» Requires finding longest prefix match

127.26.193.12

124. X . X . X
127. X . X . X
127. 12. X . X
127. 26. X . X
127. 26.190. X
127. 26.193. X
127.244. 21. 6
128. X . X . X

Find longest matching prefix in forwarding table

Lookup an IP destination address
iFlow Address Processor

- Designed for layer 2 and layer 3 switching and routing applications requiring high table densities at up to OC-192 / 10 Gb/s Ethernet line speeds
 - 10 Gb/s line rates translate into over 25 million packets per second
 - Enables at least 2 lookups per packet

- Operates as a coprocessor to a Network Processor or ASIC on a router line card
 - Sits on a standard SRAM bus
 - Configurable as 32, 64, 96, or 128-bits wide (+ parity)
 - Bus and chip operate up to 133 MHz
 - Cascade up to 4 iAP chips at full speed
iAP Applications

◆ Longest Prefix Match/Exact Match Lookup Table
 » Up to 256K 48-bit keys
 – IPv4 plus optional (up to 16-bit) VLAN or MPLS tag
 – IEEE 802.3 MAC Address
 » Up to 128K 96-bit keys
 – IPv4 <S,G> Lookups for multicast
 – MAC Address + VLAN tag
 » Up to 80K 144-bit keys
 – IPv6 plus optional VLAN or MPLS tags
 – Exact Flow Lookups (e.g. Cisco NetFlow)
 » Any combination of above subject to capacity
 – e.g. 128K 48-bit and 40K 144-bit
iAP Applications (cont.)

◆ **1st Level Associated Data (1:1 per Flow)**
 » 256K 96-bit data words
 » Treated as up to 4 fields, including
 – 2 counters (up to 48-bits and 35-bits)
 ■ Optionally saturating
 ■ Typically byte and packet counters
 – 13-bit pointer to further 2nd level associated data

◆ **2nd Level Associated Data**
 » 8K 256-bit data words
 » Many-to-1 per flow, or 1-to-1 per Next-Hop
 » Two counter fields (up to 64 bits and 48 bits),
 – Optionally saturating
 » Typically contains next hop information
 – Next Hop IP
 – Destination Switch Fabric ID
 – Billing information, etc.
iAP Features

- **Automated incremental table maintenance ops**
 - Inserts and Deletes processed “in background” while lookups continue
 - Supports over 1M inserts/deletes per second using less than 10% of the lookup capacity

- **Designed for High-Availability Telco Applications**
 - Goal is to prevent “silent failures”
 - Parity on all internal memories larger than 1Kbyte
 - Parity on external address and data buses
iAP Organization

- SRAM Write transactions go to Request Assembler
- Lookup Pipeline performs Longest-Prefix Match lookup
- High-Level Engine processes requests (like Inserts)
- 1st and 2nd Level Associated Data are indexed/updated
- Result Buffer holds results accessed via SRAM read transactions
iAP Lookup Pipeline

- Organized as a pipelined tree-like structure
- First three levels are implemented in SRAM and total approximately 1.2 Mbits in size
- First three levels are organized as a B-Tree index of the fourth level
- Each SRAM Memory is >2000 bits wide
iAP Lookup Pipeline

Final level of lookup pipeline holds entire set of keys
- 25 Mbits of embedded DRAM with an access rate of 66 MHz
- Organized as 8K rows of 3,200 bits wide
- A single row contains enough information to determine the longest prefix match for a search key which indexes that row
Associated Memory

◆ 1st Level Associated Memory
 » Each word can contain two counters
 – one up to 48-bits and one up to 35-bits
 » Supports reading counters, adding increments, and writing the values back every lookup
 » 25 Mbits of 256K x 100-bit fast embedded DRAM
 – Supports 133 MHz random-access rate

◆ 2nd Level Associated Memory
 » Supports on-the-fly statistics updates
 » Implemented as 2 Mbits of 8K by 256-bit fast embedded DRAM
Table Maintenance

- **Embedded state machines control operations of high-level table updates**
- **Inserts and deletes into the table are processed in the background, while lookups take place.**
- **Appropriate bypassing allows updates of the table to be “invisible” to the lookups.**
 - Lookups get either the original result or the new result – never an inconsistent table state
- **Massive internal bandwidth makes this practical**
Embedded DRAM

◆ The iAP contains a total 52 Mbits of custom embedded DRAM memories
 » 25 Mb, 3200 bits wide at 66 MHz
 » 25 Mb, 100 bits wide at 133 MHz
 » 2 Mb, 256 bits wide at 133 MHz

◆ 252 Gb/s aggregate on chip DRAM bandwidth
 » Equivalent bandwidth from external 133 MHz ZBT SRAMs would require approximately 1900 data pins

◆ 70% of the die area is DRAM
Embedded DRAM challenges

- **Even Embedded DRAMs must be refreshed**
 - Refresh cycles flow down the pipeline at regular intervals
 - If user prefers completely deterministic lookup timing, the user can generate refresh commands externally
 - Reduces effective maximum lookup rate to 64.6M/sec

- **Large, wide memory blocks create “interesting” floorplanning issues**
 - 3200-bit wide memory spans almost entire width of die

- **Custom DRAMs require significant resources to develop**
 - Memory design team is ~20 engineers
Physical Details

- iAP is implemented in a 0.18 micron TSMC embedded DRAM process.
- Die is 13.5 by 13.5 mm
- 476 pins
- ~750,000 logic gates
- 52 Mbits EDRAM
- 1.2 Mbits SRAM
- Power is ~5 W at 133 MHz
Conclusions

- **Embedded DRAM** enables networking applications requiring high bandwidth to large tables.
- **Alternative solutions** require more:
 - Parts
 - Pins
 - Power
 - Cost
- **Silicon Access Networks** is working on other chips too...