Vitesse Network Processors
(Sitera’s PRISM IQ2000 NPU Family)

Optimizing Architecture for Bandwidth and Flexibility

Authors: Steve Sheafor, Cindy Lindsay
Presenter: Steve Sheafor, Ph. D., Cindy Lindsay

Vitesse Semiconductor Corporation
Advanced Networking Products Division
Why Network Processors (NPUs) are Hot Chips

Early 1990s
Network Software
RISC Processor

Mid 1990s
Network Software
ASIC
RISC Processor

Flexible, but Slow
Fast, but Fixed Function

Flexible Network Services
Highly Optimized Forwarding Code
Vitesse Network Processors
New Paradigm

Performance and Flexibility

VITESSE SEMICONDUCTOR CORPORATION
NPU-based System Solutions

- Data Path (Fast Path) Optimized for per Packet Operations
- Efficient Operations with System Components
 - General Purpose RISC Processor for Control Path (Slow Path)
 - High Performance Memory for Data Buffering, Route Tables, etc.
 - Flexible Physical Interfacing
 - Standard Switch Fabric Interconnect
 - Special Purpose Coprocessor Interconnections
NPU Design Objectives

- Provide the customer with the ability to differentiate their products in the market
- Flexibility for a Wide Variety of Network Applications
 - Fully Programmable
 - Simple System Connectivity
- Cost Effective
 - High Performance based on Efficient CPU utilization
 - Minimized System Components
 - Low Power Consumption
Vitesse NPU Block Diagram

Chip Design
Focused in Three Areas

- System Functions
- Data Flow
- Packet Processing
NPU System Functions

- 25.6 Gbps Internal Bandwidth
- Modular FusionBus™ Technology
- Low Cost Rambus™ Dynamic Memory - 12.8 Gbps
- Memory Controller supports 14 outstanding memory transactions
- Flexible RISC CPU Interface
 - High Performance or Low Cost
- Optional SRAM I/F
NPU Data Flow Functions

- Off-loads Data Movement from Embedded CPUs
- Up to 12.8 Gbps Peripheral Bandwidth
- Optimized Packet Header Operations
- Packet Classification, Packet Queuing, Quality of Service (QoS) and Multicast Support
- Memory Buffer Management
- Integrated Gigabit Ethernet
Packet Processing Functions

- Four 200 MHz Network Optimized Embedded RISC CPUs + Special Packet Processing Instruction Set
- Lookup, DMA, Context Manager Coprocessors
- Four User Contexts per Embedded Processor
 - 16 Packets Simultaneously in Process
Networking Optimized CPU Architecture

- 32-bit RISC Processor
- 64-bit Memory Access
- 16 Instruction MicroBuffer
- NPU Instruction Extensions
Network Optimized Instructions

- Classes of Special Instructions
 - Bit Test
 - Byte Test
 - Field Extract
 - Enhanced Immediates
 - Double Load/Store
 - Special Arithmetic (16-bit 1’s complement)

- Vitesse’s Implementation of an RFC 1812-compliant Router
 - 50% of the implemented instructions are NPU special instructions
 - Special instructions are ~3 times as efficient as standard RISC instructions
Networking Optimized CPU Architecture

- Control Store
 - Micro-Buffer
 - 200 MHz CPU

Input FusionBus
- Header Memory 2KB
 - 16 x 128B Header Buffers
- Data Memory 2KB
 - 2KB General Purpose 64-bit, Triple Ported Data Memory

- 2KB 64-bit Triple Ported Header Memory
 - 16 x 128B Header Buffers
Networking Optimized CPU Architecture

Control Store

- Micro-Buffer

Input FusionBus

- Header Memory 2KB
- 200 MHz CPU
- Data Memory 2KB

Lookup COP

- Lookup Coprocessor
 - Fixed Size, Read Only and Pipelined Direct Memory Connection
 - Hash Table Acceleration

DMA COP

- DMA Coprocessor
 - Variable size READ/WRITE Transfers
 - Access to all Output FusionBus Modules, including Memory

Output FusionBus
Networking Optimized CPU Architecture

- **Control Store**
 - Micro-Buffer
 - Register File

- **Input FusionBus**
 - Header Memory 2KB
 - CPU
 - Data Memory 2KB
 - DMA COP
 - COP

- **Output FusionBus**

- **Five Context Register File**
 - 32 32-bit Registers for each context
 - Four User Contexts
 - One Kernel Context

- **Hardware Assisted Context Switching**
Simplified Multi-processing

- Multi-processor and Multi-Threaded Hardware for Performance Optimization
- Single Threaded Software for Ease of Programming

Example Code

```assembly
... RXR R3, R4 //Start a DMA transfer
    (possible context switch if DMA queue full)
    ORUI R5, 0x0040 //Set a flag
    TRAPQNE //Check for result available
    (context switch on no results available)
...
```
Next Generation NPUs

- Customers Continue to Demand the Acceleration of Bandwidth and the Flexibility, which allows them to Deliver a Wide Variety of Connectivity and Services
- Process Technology Advancements Enables More Transistors
- Vitesse’s Modular Architecture for System-on-Chip Design Makes It Easy to Enhance Performance and Features
 - More Processors for Raw Performance
 - More Peripheral Interfaces for Data Throughput
 - More Memory Bandwidth for Support of Services
 - Additional Special Purpose Coprocessors for Advanced Features