R18000™

The Latest SGI™ Superscalar Microprocessor

Tim Fu, Farshid Iravani, Mahdi Seddighnezhad, Kenneth Yeager, David Zhang

Silicon Graphics, Inc.
www.sgi.com
Outline

- R18000 Processor MicroArchitecture
- R18000 Memory Hierarchy
- Verification & Test
- Technology
- Summary
R18000 Chip Block Diagram

R18000 Chip

Superscalar Processor

Inst Cache

Data Cache

Cache Controller

System Interface

1 MB Secondary Cache

Tertiary Cache Tags

2 to 64 MB Tertiary Cache

System Controller

Local Main Memory

Second R18000

Network Links

Node
Scalable System Architecture

SGI’s ccNUMA system architecture

- Local memories are shared in a cache-coherent Non-Uniform Memory Architecture.
- Single-system image (SSI).
 - Single shared address space.
 - Single copy of operating system.
- Scales to very large processor counts.
 - High-bandwidth network.
 - Low-latency in hubs and routers.
 - A dozen 512-p systems have been installed.

Design Challenge

- Keep processors and/or network busy even when streaming data from remote nodes.
 - Remote latency can be hundreds of cycles.
 - Time exceeds a dozen block transfers.
• **4-way super-scalar microprocessor**
 - Mips-4 Instruction Set Architecture
 - Out of Order execution
 - Two Floating-point Execution Units
 - Each issues one Add, Multiply or Multiply-Add instruction per cycle

• **Large virtual and physical address spaces**
 - 52-bit virtual address (data)
 - 48 bits physical address
 - Larger TLB page sizes 64M, 256M and 1G page sizes
R18000 Processor MicroArchitecture
Processor Core Block Diagram

IC
32KB Instr. Cache

Instr Seq.

Active List

Free List

Branch

Mips-4 ISA
Pre-decode

32-bit Inst ⇒ 36-bit

Graduate

8 Entry FQ
8 Entry

64 Entry AQ
16 Entry

64 Entry IQ
16 Entry

64 Int. Reg.

64 FIt.Pt. Reg.

Multiply-Add

Multiply-Add

St
Ld
control
St
Ld

WrBack

Refill

Adr

ALU

ALU

TLB

64-bit Data Paths

32KB Data Cache

Hot Chips 13, August 19-21, 2001
• Two floating-point execution units
 • Second unit doubles peak FLOPS rate
 • Each unit is controlled by an 8-entry Flt.Pt. queue
 • Each queue can issue one instruction per cycle:
 • Add
 • Multiply
 • Multiply-add
 • Multiplier and adder are pipelined
 • 1-cycle repeat rate
 • Latency increased to 3 cycles for faster clock rate
 • Divide and square-root units use iterative SRT algorithms
R18000 Processor MicroArchitecture
New System Bus

• High bandwidth “SysTF” bus
 • Uni-directional wiring with source-synchronous DDR clocking
 • 64-bit data path to hub chip, for addresses and write data
 • 128-bit data path from hub chip, for read data and interventions
 • Two processor chips share bus
 • Programmable clock divisors

• Split transaction
 • Up to 28 outstanding operations (14 per processor).

• ECC protection

• SysAD mode for backward compatibility
Memory Hierarchy

Cache Hierarchy

- 3-level Cache hierarchy
 - L1: On-chip 32KB Instruction and 32KB Data cache
 - 2-way set associative
 - L2: On-chip 1M 4-way set associative on chip secondary cache
 - L3: Off-chip tertiary cache, up to 64 MB
 - On-chip tag
 - External cache is optional. Chip can operate with only internal caches

- Subset property
 - L1 and L2 lines must be subsets of L3
 - Altered L1 lines must also be subsets of L2, to simplify write-back
 - Refill from memory is loaded into on-chip L2, not into L3
 - ECC protection on L2 and L3 caches, data and tags. (Parity on L1)
 - Non-blocking operation. Write-back. LRU replacement algorithm
 - Cache locking supported for L2 and L3
• On-chip secondary cache
 • 1 MB, 4-way set-associative, 128B line size
 • Two banks of multiple small arrays
 • Each bank has a write-back buffer for 8 cache lines
 • Copy entire line in one cycle
 • Operates at processor pipeline clock rate
 • Latency is less than half external cache latency. (5 to 6 cycles versus 12 to 14)
 • Bandwidth is 6 times greater than external cache
 • Simultaneous read and write at full internal bus bandwidths
 • Internal DDR clocking reduces wiring and noise
 • Read 4 quadwords per cycle and write 2 quadwords per cycle
 • All transfers are 64B packets, sent in two cycles
 • Reduces interference between instruction and data cache refills
 • Eliminates interference between refills and write-back
• Tertiary Cache - Data Arrays
 • 4-way set-associative, 128B line size
 • Off-chip bandwidth is physically constrained by pin-out and wire length
 • 144 pins for 16 bytes data plus 8-bit ECC
 • Programmable clock rate. (Bit rate up to processor pipeline clock rate)
 • SDR or DDR synchronous SRAM, or
 • Fast DDR synchronous DRAM
 • Allows very large caches up to 64MB by 8-way sectoring
 • Same transfer rate as SRAM
 • Slightly longer latency is acceptable because:
 • Tertiary cache is only accessed if miss in secondary cache
 • Tertiary cache transfers 128-byte blocks
 • Latency is much less than main memory
• Tertiary Cache Tags
 • 400-KB memory array contains:
 • 16,536 sets of four 52-bit address tags
 • ECC error check and correction on each cache set
 • Similar circuit design as on-chip secondary cache
 • Tag check is completed before accessing external data RAM
 • 4-way set-associative organization
 • L3 miss does not use any external RAM bandwidth
 • Tag check and update take no external RAM bandwidth
 • System intervention to “snoop” cache cause minimal interference
 • Minimize latency for refill from main memory
• Size of on-chip cache tag array limits maximum size of off-chip cache. Sectoring raises limit from 8 MB to 64 MB.

• A single address tag can be used for 1, 2, 4, or 8 adjacent cache blocks (“sectors”)

• Each additional sector requires only an extra 2-bit state

• Allows 8 times larger cache with only 50% larger memory array
 • An 8-sector tag represents a 1024-byte “macro-line”
 • Sectors are filled only when referenced
 • Victim tag may require up to 8 lines to be written back to main memory
 • “Lazy” write-back logic allows sectors to be refilled first
 • Only one X-queue entry is kept busy
• Use parallel operation to achieve high performance
• Use high internal bandwidths to simplify logic design
• On-chip L2 cache is interleaved in 2 parallel banks
 • Each bank has separate read bus to processor
 • Data cache write-back bus is shared
 • Each bank is controlled by a separate X-Queue
 • Operations to different cache sets are independent
 • Cache bandwidth higher than read plus write buses combined
 • No interference between reads and writes
 • Easier arbitration
• Bandwidth of each internal bus higher than system bus plus external cache combined
 • Secondary cache can be refilled directly, with only minimum buffering
Memory Hierarchy

High-Bandwidth Buses

bytes / cycle

16 8

Fetch Load/Store

32 32 32

Read Write Read

Write-back buffers

Processor

I-Cache D-Cache

Primary Caches

System Bus

8

16

System clock clock

Processor

I-Cache

L2-Cache Bank 1

L2-Cache Bank 0

Secondary Cache

L3 External RAM

Tertiary Cache

Gen Chk

Buffer Buffer

External cache clock

16

128 bit

16

128 bit

8/31/01 16
2 X-queues control external operations (L2 and L3 caches, system interface).
- Bank selected by Address[7], because L2 lines are 128 bytes.
- Each XQ contains 8 entries.
- Each entry contains 6 independent control fields for:
 - Primary caches.
 - Secondary cache read.
 - Tertiary cache read and write.
 - System bus read and write.
Cache Control
Split operations into simple actions

Example:
Data cache miss is split into four (almost) independent actions:

- Write Dc victim into Sc.
- Write Sc victim into Tc.
- Write Tc victim into memory.
- Refill Dc and Sc from memory.

Bypass data to processor
Verification & Test

• **Tools and environment:**
 - In house HDL and simulator with backup and replay.
 - Graphical user interface for simulation and regression.
 - Instruction level simulator as a reference machine.
 - Programmable random code generators for UP and MP.
 - C-based system model supports.
 - Cache arrays, memory controller and arrays, bus controller.
 - Bus protocol checking.
 - 1 to 4 processor configuration for MP verification.

• **Diagnostics**
 - Architecture Verification Programs (AVP).
 - Micro-architecture Verification Programs (MVP).
 - Random diagnostics from programmable random code generators.
 - Diagnostics are self-checked and/or compared with a reference machine.
Verification & Test
Trace Recorder, On-Chip debugging & profiling device

Debugging Challenges
Activity hidden on chip (L1 and L2 caches).
Deep sub-micron features are difficult to observe in testers, impossible in a system.
Large systems have many processors.
Failure point may be difficult to find.
Exact failure condition must be recreated.

On-chip Trace Recorder
512 x 72-bit trace memory (4 KB).
Records signals at processor clock rate.
Multiple trigger and recording options.
Configured by program or by JTAG.
Helps identify dynamic state of processor:
 cache refill, branch mispredict, ordering.

- Trigger, Mask
- CPU State to Be Captured
- Processor Control
- Trace Recorder
 512 x 72-bit memory
- Register File
- JTAG
 JTAG Control
NEC’s UX5 Advanced CMOS Technology

- **Technology Generation**: 130 nm
- **Voltage**: $V_{cc} = 1.2$ V
- **Gate length**: $L_{poly} = 95$ nm
- **Core oxide thickness**: $T_{ox} < 19$ Å
- **Transistor current**: $I_n > 800$, $I_p > 300$ μA/μm
- **Leakage current**: I_{offN} or $I_{offP} < 10$ nA/μm worst case
- **6T Memory Cell Area**: < 3 μm²
- **Interconnect wiring**: 9 Layers Full Copper Damascene
- **IMD Dielectric Constant**: < 3.0
Technology

Scanning and Transmission Electron Microscope Images

Figure (a): 3D SEM image of the metal stack on the core memory area

Figure (b): TEM image of R18000 device cross section. Achieving a 95nm gate length required a size reduction etch in combination with KrF lithography. A gate ReOx before extension formation reduces the Cov to less than 0.29 ff/μm.
Technology

- **Figure (c):** TEM image of the metal stack for the R18000 core chip. Low K dielectric (Ladder Oxide) is used to reduce the lateral metal capacitance. Ladder Oxide offers comparable K value to SiLK with better thermal properties.
• R18000 is a high-performance superscalar microprocessor
 • Designed for use in large scalable ccNUMA systems
• Supported by a high-bandwidth system bus and a 3-level cache hierarchy
 • 1 MB on-chip secondary cache
 • On-chip tags support a 64 MB external cache, with sectoring
• Multiple banks and non-blocking operation improve cache performance
 • Each operation is split into multiple independent actions
• ECC protection
• Trace recorder supports system debugging