The ARM10 Family of Advanced Microprocessor Cores

Stephen Hill
ARM Austin Design Center
Agenda

- Design overview
- Microarchitecture
 - ARM10
 - Memory System
 - Interrupt response
- Power
 - Dynamic power
 - Power down modes
- VFP10
- ETM10
- Summary
ARM1020E Overview

- Max frequency: 400MHz
 - 0.9V, worst case
 - TSMC 0.13um LV

- MIPS/MHz: 1.25
 - 500 MIPS @ 400MHz
 - Dhrystone 2.1

- Active power consumption: 0.51mA/MIPS
 - Room Temp / Typical / 1.1V
 - Average when running Dhrystone 2.1

- Area
 - ARM1022E (2x16KB): 6.9mm²
 - ARM1020E (2x32KB): 10.3mm²
ARM10E Microarchitecture

- 64-bit instruction and data interfaces
- Static branch prediction with branch folding
- Parallel load/store pipeline
 - Dedicated machine for LDM/STM execution; all but the first cycle of these instructions are hidden if no dependencies are encountered
- Parallel execution of multi-cycle coprocessor operations
- Multiply 16 bits per cycle
 - 1-3 cycle throughput and 2-4 cycle latency
 - No data-dependent MUL cycle counts
ARM7 Pipeline versus ARM10

ARM7TDDMI

FETCH
- Instruction Fetch
- Thumb→ARM decompress
- ARM decode
- Register Read
- Shift
- ALU
- Reg Write

DECODE
- ARM decode
- Reg Select
- Register Read
- Shift
- ALU
- Reg Write

EXECUTE
- ARM decode
- Reg Select
- Register Read
- Shift
- ALU
- Reg Write

ARM10

FETCH
- Branch Predictor
- Instruction Address Generator
- Instruction Fetch

ISSUE
- ARM or Thumb Instruction Decode
- Coprocessor Instruction Issue

DECODE
- Register Read + Result Forward + Scoreboard
- Data + Branch Address Generator
- Shift + ALU
- Multiply

EXECUTE
- Data Cache Interface
- Coprocessor Data Interface
- Multiply Add
- Reg Write

MEMORY

WRITE
ARM1020E Memory System

- Instruction & Data Caches
 - 32Kbyte Instruction and Data caches
 - Virtually addressed, 64-way set-associative, 32-byte lines, 64-bit R/W
 - Configurable for Write Through or Write Back operation
 - Lockable by line (1/64 of the cache)

- MMUs
 - Two fully associative (I and D) 64-entry TLBs
 - Lockable by entry
 - Support for software loadable TLBs

- Write Buffer
 - Eight 64-bit entries, plus 32-byte cache line castout buffer

- AHB Bus Interface
 - 64-bit wide data transfers, split transactions
 - Multi-layer AHB support (separate I and D-side system interfaces)
ARM1020E Memory System

Performance features:
- Critical word first
- Non-blocking data cache
- Hit-under-miss (H-U-M)
- Data cache streaming (forwarding) from linefills
- Data cache store merging into linefills
ARM1020E Interrupts

- Interrupts taken in Execute stage
- Fast interrupt mode:
 - First load miss stops further memory ops but not other instructions
 - Limit write buffer depth
- Recommended measures for fast interrupt response:
 - Lock handler code into Caches and TLB
 - Set data cache to write-through (no cast outs)
 - Limit LDM length to 9 registers (spans only 2 cache lines)
ARM1020E Interrupts

- Worst case Interrupt response time to enter handler (G:H Clock 1:1)
 - Worst case of outstanding memory operations (LDM just started)
 - 3 table walks needed (unless TLB locked down)
 - Write buffer full, bus not granted by default

<table>
<thead>
<tr>
<th>CYCLES (approx)</th>
<th>Fast Interrupt mode</th>
<th>Max Regs in LDM</th>
<th>Write through D cache</th>
<th>TLB locked down</th>
</tr>
</thead>
<tbody>
<tr>
<td>171</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>148</td>
<td>✓</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>✓</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>✓</td>
<td>16</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>48</td>
<td>✓</td>
<td>9</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>
ARM1020E Dynamic Power

ARM1020E
Dhrystone 2.1

Data Cache 24%
Instruction Cache 22%
Instruction MMU 5%
Data MMU 5%
BIU 5%
Clocks 6%
Buffers 1%
ARM10E Core 32%

(PowerMill simulation)
ARM10E Core
Dhrystone 2.1

LSU 10%
Prefetch 15%
Decode and Sequencer 33%
Multipliers 2%
Clock 8%
Other 12%
Execute 7%
RegBank 5%
ETM Interface 3%
Forwarding 3%
CP Interface 2%

(PowerMill simulation)
Power Down

- **CPU executing (Fast/Normal/Slow)**
- **Active Power**
- **RUN**
- **STANDBY**
- **DORMANT**
- **SHUTDOWN**
- **Cycle Delay to Resume**

- **Resume**
 - $>10^0$ cycles
 - $>10^1$ cycles
 - $>10^2$ cycles
 - $>10^4$ cycles

- **CPU & Cache state lost. All core power removed.**
- **CPU state lost. Cache state preserved.**
- **CPU clock stopped. Wake on interrupt or debug event.**
Power Down

- **Power Management Controller**
- **Interrupt Controller**
- **Debug Hardware**
- **PLL**
- **PM Layer**
- **CORE and SCC**
- **Cache**
- **PM Layer**
- **ARM High Performance Bus**
- **RAM**
- **ROM**
- **DSP Core**
- **PM Layer**
- **Clocks**
VFP10

- Full IEEE 754 compliant (with SW support)
- Performance:
 - 236 MFLOPS Linpack (SAxPY) @ 400MHz
 - 400M FIR Taps (800 Peak MFLOPS) @ 400MHz
- Functions supported in hardware
 - Multiply, add, multiply-add, subtract, multiply-subtract, negate, negate multiply, negate multiply-add, negate multiply-subtract, absolute value, compare, convert, divide and square root, conversions
- Most IEEE 754 exceptions handled in hardware
- RunFast mode
 - No trapping enabled (Denormals flush to +0)
 - NaN fractions not propagated (not typical)
VFP10

- 7 Stage pipeline
 - Fetch - Issue - Decode - Execute (E 1) - E 2 - E 3 - E 4/WB
- 32 Single precision / 16 Double precision registers
- High performance short vector operations
 - Register banks operate as hardware circular queues and can be addressed as short vectors (up to 8 values)
- Separate divide/square root unit
 - Supports load/store, and arithmetic operation in parallel with divide/square root operation
- Separate load/store unit
 - Load/store operations may be done in parallel with data processing operations
 - 64-bit unidirectional data interfaces
- Area: ~1.6mm² in 0.13um
- Full real-time instruction and data tracing
- Monitors the core’s *internal* buses
- Zero performance overhead
 - Supports high frequency trace with demux-port
- Configurable synthesis for optimum:
 - area
 - features
 - pin count
- Programmed non-intrusively through JTAG
ARM1020E Family Summary

ARM1020E:
- 500 DMIPS @400 MHz
- 0.51 mA/MIPS
- 10.3mm² / 6.9mm²

VFP10:
- 236 MFLOPS @400MHz
- IEEE 754 Compatible

ETM10:
- Full speed, real time
- Embedded trace

(VFP10, IMMU, Integer Unit, DMMU, I-Cache, D-Cache)