The Intel® 870 Family of Enterprise Chipsets

Fayé Briggs, Michel Cekleov*, Kai Cheng, Ken Creta, Manoj Khare, Steve Kulick, Akhilesh Kumar, Lily Looi, Chitra Natarajan, Linda Rankin

Enterprise Products Group
Intel® Corporation
Hot Chips XIII

*Michel Cekleov is now at 3PARdata.
Introduction

– Scalable building blocks
 • 2P to large-scale multi-node (distributed shared memory platforms)
 • 3 major subsystems (CPU/memory, IO, coherent switch)
 • Supports next generation Itanium Processor Family(IPF) & IA32 server CPUs

– Key technologies
 • Scalability Port – physical interconnect, coherency protocol
 • Scalability Port Switch – multi-node coherency, router

– Distributed Shared Memory architecture

– High End Features
 • Caching I/O hub
 • Domain partitioning and node hot plug
 • Extensive Error handling support
Motivation

• Provide a family of scalable enterprise chipsets for next generation Itanium Processor Family (IPF) & IA32 server processors
 – Common building blocks to scale from 2P to 256P servers

• Extensive RAS features for the enterprise

• Provide building blocks for OEMs to differentiate and scale beyond 16P with persistent interface
Intel® 870 2 - 4 Way Server

- Scalable Node Controller
- I/O Hub
- Scalability Ports: 3.2GB/s X2 = 6.4 GB/s per direction
- Hub Interface: 1GB/s per port
- IA Server Processor
- Memory Channels: 6.4GB/s
- DDR

Diagram showing the server's components and connections.
Intel® 870 16 Way Server

Scalability Port Switch

Total SP BW 3.2GB/s X 6 X 2
= 38.4 GB/s per direction
= 76.8 GB/s total

Legacy I/O

IOH

PCI-(X) Bridge
InfiniBand* Bridge

PCI-(X) Bridge
InfiniBand* Bridge
Greater than 16-Way Server

OEM switch / interconnect

SNC

MEM

MEM

IOH

Legacy I/O

PCI-(X) Bridge

InfiniBand* Bridge

Legacy I/O

PCI-(X) Bridge

InfiniBand* Bridge
870 Processor/Memory Subsystem

- **Scalable Node Controller**
 - Supports Memory-Only (no processor) option

- **DDR Memory Hub**
 - Supports 2 DDR channels
 - 4 DIMMs on each Channel
 - 128GB/SNC with 1Gb DRAMs

- **FWH**
 - Firmware for each Processor bus
 - supports parallel initialization & Boot

![Diagram of Scalable Node Controller (SNC) with Scalability Ports (SBD) and DDR Memory Hub (DMH) connections.](image)
870 I/O Subsystem

• 870 I/O Hub
 – Multi-stream caching hub
 – Adaptive Prefetch Logic
• P64H2
 – Dual PCI-X bridge
 – Hotplug PCI
• VXB
 – Infiniband Host Channel Adapter
 – Four 1x ports (2.5 Gbps)
• ICH
 – Legacy I/O bridge
• Others Possible...
870 I/O Hub

- **Common Write Cache**
 - Promotes combining for partials

- **Read Cache per Hub Interface**
 - Least-recently allocated replacement policy
 - Data storage shared across one or many streams

- **Cache Directory**
 - Tracks the lines inside the IOH

- **Multiple Transaction queue**
 - Relaxes Ordering wherever possible
870 IOH Prefetch Logic

• Speculative Prefetching
 – Useful for PCI where read length is not specified
 – Hides long memory latencies and provides data streaming
 – Priority given to received PCI bridge requests over speculative pre-fetches
 – Dynamically detects and distinguishes between streams using address patterns
 – Dynamically adapts pre-fetching by throttling pre-fetch per stream based on the current number of active streams

• Non-speculative Prefetching
 – Useful for PCI-X and Infiniband where read length is specified
 – I/O bridges can be designed for low latencies
 – IOH prefetched up to indicated amount and locally buffers for subsequent reads
Coherent Switch - (SPS)

- Six identical scalability ports
 - Each supports up to 3.2 GB/s peak bandwidth each direction
 - Each port contains the 3 layers of the Scalability Port (SPX/SPL/SPP)
 - Protocol layer further partitioned into distributed (SPPD) and centralized functions (SPPC)
- Interconnect includes a crossbar and bypass buses for critical coherent traffic
- Enables Central Snoop Filter Architecture
 - Minimizes snoops to remote nodes
SPS Coherency

• Distributed SP Protocol (SPPD)
 – Address/request decoding determines how a packet should be routed in the SPS.
 – Controls data transfers between ports including modified data transfers

• Centralized coherency protocol divided into four interleaves
 – Interleaved to improve throughput
 – Includes Snoop Filter (SF) and Centralized SP Protocol (SPPC)
 – SPPC contains programmable protocol engine. Processes requests and responses and spawns transactions as needed.
 – Handles global ordering.
 – Contains anti-starvation logic to guarantee fairness between nodes.
Scalability Port

- Point to Point Coherent Interconnect – 6.4 GB/s
- Supports both IA32/IPF processors
- Efficient I/O transfer support
- High bandwidth, Low Latency
- Enhanced RAS support
- Scalable, Pin-efficient Architecture
 - Layered architecture
 - Packet based protocol
 - No fixed timing, buffer size relations
 - Muxed Request/Response/Data
Layered Architecture

- Three Layers
 - Physical Layer (SPX)
 - Link Layer (SPL)
 - Protocol Layer (SPP)
- Benefits: Modularity/Longevity, Efficient routing
SPS Snoop Filter

- Stores address tags/state for all system caches
 - Supports multiple line sizes
 - ECC coverage – single-bit errors corrected, double-bit errors detected

<table>
<thead>
<tr>
<th>Bits</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[35:29]</td>
<td>ECC check bits</td>
</tr>
<tr>
<td>[28]</td>
<td>State of the cache line (M/E, S, I)</td>
</tr>
<tr>
<td>[27:22]</td>
<td>Presence vector</td>
</tr>
<tr>
<td>[21:0]</td>
<td>Tag Portion of the address</td>
</tr>
</tbody>
</table>

- **Snoop Filter size is ~1 MB**
 - Can maintain state of ~200K cache lines per SPS
 - 12-way set associative array partitioned into 4 interleaves
 - Pseudo-Least-Recently-Used (PLRU) replacement algorithm
 - Snoop filter operates at 400 MHz. Maximum throughput of 266M LUU/s (lookup-update/s) per SPS.
Transaction Flow Example #1

- Clean local read
Transaction Flow Example #2

- Clean remote read
Transaction Flow Example #3

- Remote read with modified (HITM) data
Distributed Memory Interleaving

- Supports Interleaving 4 ways across:
 - 2, 3, or 4 SNCs.
 - Arbitrary numbers of SNCs for >16 way
 - Asymmetric Configurations: odd numbers of DIMM rows, different DIMM sizes and DRAM densities
 - Block mode for NUMA optimized systems and cache-line interleave for non-NUMA.
 - 64B (IA32) cache lines and 128B (IPF) cache lines
Hierarchical Decode

• Global Interleaving (across SNCs)
 – Lines may be interleaved up to 4 ways (A[8:7] = 00,01,10,11)
 – Memory Map is divided into 6 Global Interleave Ranges (in SPSs)
 • Each interleave range has 4 ways which may be assigned to memory on a
different SNC, of a different DIMM size, DRAM density, etc.
 • OEM switches implement as many Global Ranges as required by their
topology.

• Local interleaving (across DRAMs)
 – SNC address bit permuting rotates accesses to consecutive lines across
a sequence of 32 DIMM Channels, DIMM Rows, banks, sides, etc.
 – These local interleaves can be combined on or across SNCs to form
global interleaves.
Interleaving Example: 3 SNCs
HotPage For Software Tuning

- Real-time event collection for host bus transactions
 - Address granularity (64B, 4KB, 8KB, 64KB, 256MB)
 - Event qualifiers (reads, writes, etc.)
 - Collection qualifiers (sample interval, threshold)
 - SRAM with indexed access
 - Autorange
 - Ease of use: compatible with all event logic
- Application
 - Histogramming (maximum counts per range)
 - Scanning with event triggered on threshold
 - At 8KB resolution, 0.5 sec sample periods, 32 GBs of memory scanned in 17 minutes
RAS Feature Summary

Detection
- ECC/parity on buses
- Memory ECC
- Memory scrubbing
- Control/operational errors
- > 50 unique errors detected

Containment
- Correction, Data poisoning
- Transaction error response

Status/Signaling
- Error typing
- Error Masking
- First error/Next error status

Logging
- Error logs (control/data)
- Multi-node error trail

Serviceability
- Memory failure correction/isolation
- PCI hotplug
- CPU/memory, IOH node hotplug

Multi-node
- Multi-pathing/redundancy
- Domain partitioning
Node Hot Plug

- Add/remove/replace processor/memory node, or I/O node while OS is running
- SP is the hot plug interface
 - Physical Layer Support
 - Tri-state control based on connection (SP_Pres)
 - Link Layer Support
 - Connection/Initialization handshake sequence
 - Software controllability/observability
 - Enable/disable control
 - Signaling and status on SP connection_INITIALIZATION events
 - Register storage available to store hot plug sequencing states
 - Observability/controllability of SP related GPIOs
 - Connection status (SP_Pres pin)
Multi-pathing/Redundancy

Redundancy
- Processors
- SNC / memory
- Scalability Port / SPS
- IOH
- I/O Bridges

Multi-pathing
- Around SPS
- Configurable I/O

Fast reset and reconfiguration
SPS : Domain Partitioning

SPS partitions
- of protocol core
- of snoop filter
- Any 2 or more SP ports
- Independent reset
- Independent error status/signaling
- Independent SP interrupt output
- Domain write protection of registers

Each domain supports
- Node Hot Plug
- Redundancy
- Multi-Pathing
- Reset
Summary

• The Intel® 870 chipset enables Enterprise-level features for two Intel Architectures and multiple system topologies up to 16P.

• The Intel® 870 chipset also provides building blocks for scaling beyond 16P through the scalability port.