Benchmarking Network Processors: More than just MIPS

Nathan Pham
Performance Engineer
IBM Microelectronics
Network Processor

- Core component of network equipment (routers, switches, firewalls, web switches, etc.)
- The goal is to be to networking products what CPUs are to PCs
- Hybrid solution that provides high performance through hardware and flexibility through software programmability
- Optimized to handle packet processing
NP Functions

- Steady-state functions
 - Ex: frame storage, alteration and classification
- Control functions
 - Ex: routing and signaling
- Management functions
 - Ex: NP configuration and diagnostics

Control Processor

Network Processor

Forwarding

Control
MGT
NP Architecture
Benchmark μPs vs. NPs

- NP is designed for fast packet processing, not for general applications.
- Existing computational-intensive benchmarks for CPUs are not applicable to NPs.
- Different performance metrics
NP Benchmarking Levels

- **System level**
 - Ex.: routers, firewalls, and web switches.

- **Function level**:
 - Ex.: IP forwarding, MPLS forwarding, QoS, etc.

- **Micro operation level**:
 - Ex.: LPM table lookups, 5-tuple table lookups, and CRC calculations.

- **Hardware operation level**:
 - Ex.: throughput/latency for accesses to memory.
Benchmark Requirements

- Architecture independent
- Specific to the NP application domain of interest
- Meaningful performance metrics
- Realistic test environment
IPv4 forwarding function level benchmark

- Basic IPv4 forwarding function
- Developed by Network Processing Forum (NPF) benchmark working group
- Members: Over 80 companies including IBM, Intel, Agere, EZ Chip, Vitesse, etc.
- Other benchmarks: IPv6, MPLS, and DiffServ
IPv4 Forwarding Benchmark Setup

Reference
Platform console

TG console

Reference Platform

Data traffic

Control Traffic

Traffic Generator
IPv4 Forwarding Benchmark Metrics – Forwarding Rate

- Max rate that frames can be forwarded
- Traffic sent to NP at max line rate
- Influencing factors:
 - Packet processing time
 - Packet rate
 - Queuing mechanism (queue size, discard mechanism)
- Reporting numbers
 - Frame rate: in Million packets per second (Mpps)
 - Bit rate: in Gigabit per second (Gbps)
 - Percent of line rate
Metrics – Throughput Rate

- Max rate that frames can be forwarded with no frame loss
- Cannot always derive from forwarding rate
- Influencing factors:
 - Packet processing time
 - Packet rate
 - Queuing mechanism (queue size, discard mechanism)
- Reporting numbers
 - Frame rate: in Million packets per second (Mpps)
 - Bit rate: in Gigabit per second (Gbps)
 - Percent of line rate
Metrics – Latency

- Time needed to process and forward a data frame

- Sources of latency
 - Queuing delay
 - Processing time
 - Frame movement internal to NP
 - Stall time

- Influencing factors
 - Data rate
 - Frame size
 - Queuing mechanism (queue size, discard mechanism)
 - Software efficiency
 - Resources utilization efficiency
Metrics – Loss rate

- Percent of incoming data frames dropped by NP
- Not simply the reverse of throughput rate
- Two thresholds
 - Max line rate
 - Throughput rate
- Shows NP forwarding behavior between thresholds
Metrics – Overload forwarding rate

- Forwarding rate in extremely congested scenario
- Data frames sent at much higher than max line rate.

- Influencing factors
 - Queue size
 - Discard mechanism
 - Flow control
 - Processing time

- Shows NP forwarding behavior in stressed condition
Metrics – Forwarding table update rate

- Most important control function for IPv4
- Max rate at which forwarding table entries can be added, updated, or deleted

Influencing factors:
- Control Point (CP) processor power
- Communication channel b/t NP and CP
- Control action processing time

Implementation details:
- Routing protocol
- API calls
- Simulated packets
Metrics – Headroom

- Excess processing power left over while concurrently keeping up with data traffic at throughput rate
- Simulate real world usage of NP
- Data and control traffic sent concurrently
- Measured by route updates/second
- Influencing factors:
 - NP processing power
 - Priority mechanism (b/t control and data traffic)
IPv4 Forwarding Benchmark Parameters

- **Routing table**
 - LPM Table lookup time ~ processing time
 - Table size and structure
- **Frame size**
 - Smaller frame size ~ higher packet rate
 - Real world traffic profile
- **IPv4 forwarding operation**
 - Vanilla IPv4 forwarding
 - IPv4 with option/control
- **Traffic mapping**
- **Run time**
<table>
<thead>
<tr>
<th>Requirements</th>
<th>IPv4 forwarding benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architecture independent</td>
<td>Yes</td>
</tr>
<tr>
<td>Specific to application domain</td>
<td>Yes</td>
</tr>
<tr>
<td>Meaningful metrics</td>
<td>Yes</td>
</tr>
<tr>
<td>Realistic test environment</td>
<td>Yes</td>
</tr>
</tbody>
</table>
IBM PowerNP NP4GS3

- 16 programmable picoprocessors provide 2128 MIPS aggregate processing capability
- Embedded PowerPC processor included
- Hardware accelerators
- Multi-threading supported
- 40 Fast Ethernet/4-Gb MACs/OC-48c/OC-48/four OC-12/sixteen OC-3
- Up to 64 NPs can be connected via switch fabric
IBM PowerNP NP4GS3 Performance

Throughput results are consistent across three test scenarios in which engineers measured NP4GS3 performance:
- In a scenario with a 30,000-entry snapshot of a sample routing table derived from MAE-West,
- From a synthetic 100,000-entry routing table,
- From the synthetic 100,000-entry routing table while it handled over 5,000 updates per second.

Throughput (as a percent of line rate)

Packet size in bytes

IBM PowerNP NP4GS3 Throughput
Gigabits-per-Second and Packets-per-Second Rates
NP4GS3 Performance

- Delivers OC-48c wire-speed performance
- Maintains line rate with a 30,000-entry real-world routing table
- Maintains line rate with a 100,000-entry synthetic routing table
- Maintains line rate with a 100,000-entry synthetic routing table while concurrently handling 7,300 routing table updates per second
- Maintains low latency in all scenarios

IBM PowerNP NP4GS3 Average Latency Results

- Packet size in bytes
- Latency in microsecond

30,000-entry routing table snapshot from MAE-West
Synthetic routing table with 100,000 entries
Synthetic routing table with 100,000 entries, plus over 5,000 route updates per second

1Non-standard frame sizes (49, 65, 129, 257 bytes) were tested only under the most stressful routing table scenario – the synthetic 100,000-entry routing table with over 5,000 concurrent route updates.
Summary

- Network Processor is a new and important component of modern network equipments.
- Four levels of performance benchmarking the NP: system, function, micro operation, and hardware.
- Benchmark should be developed based on the application NPs are used for.
- IBM PowerNP NP4GS3 delivers an industry-first verified single-chip solution that can handle OC-48c IPv4 packet processing at line rate.
Further information

- IBM Microelectronics: http://www.chips.ibm.com
 - PowerNP NP4GS3 network processor specs, documentation, etc.
 - Tolly Group report on IBM PowerNP4GS3 performance
 - NP4GS3 - MDR’s processor of the year award

- Network Processing Forum
 http://www.npforum.org