Broadcom Calisto™:
A Multi-Channel Multi-Service Communications Platform

John Nickolls
L.J. Madar III
Scott Johnson
Viresh Rustagi
Ken Unger
Mustafiz Choudhury

Broadcom Corporation

nickolls@broadcom.com
Calisto™ Outline

• Communications gateways
 – Multi-channel, multi-service, real-time

• Platform architecture
 – Cluster architecture
 – SpiceEngine vector DSPs
 – Shared memory
 – Multi-channel I/O

• Implementation
• Performance
• Summary
Multi-Channel Communications

Cable, xDSL Access Gateways

Universal Port Gateway (RAS)

Packet Network

ATM/FR/IP

VoIP/DSL/DLC

PSTN

CO/PBX

Trunking Gateway

Enterprise Voice/Video

3G Wireless
Calisto™ Gateway Blade

- Carrier-class/enterprise gateways
 - Voice over packet, media, fax, data, wireless, trunking, remote access
 - Require many diverse services
 - Require 1000’s of channels per blade
 - Severely limited power budget

- Prior gateways were low density
 - Complex designs, many different chips

⇒ Calisto is a gateway on a chip
 - Integrates DSPs, CPUs, RAMs, I/O
 - Programmable multi-service platform
 - Supports 60 – 240 channels per chip

- Simple Calisto chip array
 - Enables over 2,016 channels per blade
 ⇒ Efficient low-power design
Multi-Service Gateway Stack

- Complex service suite
 - Minimize assembler
 - Flexible compiled C software
- Any service, any port, any time
 - Total program image 200 – 700 KB
 - Single-image shared memory
- Compute + memory demand
 - 11 – 53 DSP/RISC MCPS/channel
 - 4 – 20 KB inter-frame data/channel
 - Balanced compute and memory
- Mix of DSP, packet, OS work
 - No time for DSP task + packet task
 - Hybrid DSP/RISC processors
 - Dedicated OS processors

Total: 11 – 53 MCPS required per channel
Many Real-time Periodic Tasks

• Process frames periodically for all channels
 — Service-specific frame period: 5, 6, 10, 16.7, 20, or 30 msec
 — 800 to 3,000 tasks/sec per DSP, or 4 to 15 tasks per frame period
 ➔ Every service stack can be executed any time

• Requires low latency processing delay with low jitter
 — Incremental latency of 1 – 2 msec, jitter under 250 μsec
 ➔ Combine all processing in single per-frame task, minimize overhead

Packet Circuit and Packet Circuit Channel task flow

Accumulate η frame f1 | Accumulate η frame f2 | Accumulate η frame f3
Mapping Application Attributes

<table>
<thead>
<tr>
<th>Application Attribute</th>
<th>Platform Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many independent channels</td>
<td>Many processors, many parallel per-channel tasks</td>
</tr>
<tr>
<td>Many diverse services</td>
<td>Programmable, primarily in C; large instruction memory, fast cache fill</td>
</tr>
<tr>
<td>High channel density</td>
<td>Minimize power, share resources</td>
</tr>
<tr>
<td>Digital signal processing</td>
<td>Vector data parallelism, operand throughput, memory bandwidth</td>
</tr>
<tr>
<td>Network packet processing</td>
<td>Task parallelism, sequential protocols</td>
</tr>
<tr>
<td>Mix of DSP and packet work</td>
<td>Hybrid DSP/RISC processors</td>
</tr>
<tr>
<td>Low latency, low jitter</td>
<td>Consistent task run time, minimize task overhead and contention</td>
</tr>
</tbody>
</table>
Calisto BCM1510 Architecture

Clusters partition functions
- **CM**: 1 MB Total Cluster Memory
 - Task data, I/O buffers, stacks
- **CP**: 4 Cluster Processors
 - Run OS and supervise cluster
- **SE**: 16 SpiceEngine DSPs
 - Run DSP/packet tasks
- **MB**: 5 Memory and I/O Bridges

Share resources efficiently
- **SM**: 768 KB Shared Memory
 - Single OS & application image
- **I/O**: 4 Multi-channel I/O interfaces
- **MP**: Main Processor
 - Runs OS and supervises chip
- **Hub**: Chip synchronization Hub
Cluster Architecture

• **256 KB Cluster Memory**
 − Shared by CP, SEs, MB, I/O
 − Task, OS, I/O communication

• **Pipelined CM switch**
 − Low latency SE load pipeline
 − Minimal memory contention

• **Cluster synch hub**

• **4 SpiceEngine DSP pool**
 − Next available SE runs task
 − No channel affinity → min latency

• **RISC Cluster Processor**
 − Schedules SE tasks and output
 − Services interrupts and input
 − Frees SEs of overhead
SpiceEngine™ Vector DSP

- **Vector registers**
 - Fast structured data access
 - Reduce cluster memory demand
- **Fixed-point DSP pipeline**
 - Configurable 16/32/40 bits
 - 10 Parallel operations/cycle
 - ITU saturation arithmetic
- **Efficient C compiler target**
 - Simple single-MAC datapath
 - Narrow 24-bit instruction issue
 - Wide configuration register issue for loops and vector operations
 - Fewer cycles than comparable DSPs, using primarily compiled C

Why Vector Registers?

- **Fast structured data access**
 - Vectors, arrays, tables, lists
 - Multi-port vector register access
 - Compiler-scheduled preload

- **Efficient DSP performance**
 - Vector preload covers memory latency, unlike data cache miss
 - Reduce DSP memory accesses and power: $O(N \cdot T) \rightarrow O(N + T)$

- **Vector address unit (VAU)**
 - Low overhead strided address

- **Vector registers & configurations**
 - Sustain 1 cycle per MAC with minimal memory bandwidth
Vectorizing C Compiler & Tools

• Multi-level loop vectorization
 – Automatic and manual vector register allocation
 – Vector register load scheduling
 – Multi-level vector stride detection

• Dynamic configuration generation
 – Minimum-cost configuration generation, load scheduling

• Signal processing, cross-module optimizations
 – Value range optimization, saturation algebra
 – Intrinsic deduction, inlining, constant propagation
 – Redundant store elimination (e.g. ITU overflow flag)

• High-efficiency signal/packet processing in C
 – Typical ITU reference C within 2x cycles of hand-coded assembler
 → Enables complete C service stacks, including DSP and network code
 – Multi-channel debugging, profiling, performance tuning tools
Cache Fill from Shared Memory

- **Shared Memory**
 - Single program image, 768 KB
 - Fills SE & CP instruction caches
 - Interleaved 4 banks x 128 bits

- **Pipelined crossbar switch**
 - Delivers full 512 bits per cycle
 - Typical utilization 50% – 80%
 - Supports I/O bus and SDRAM

- **SE instruction cache fill**
 - Memory Bridge DMA engine
 - Cache reduces memory demand
 - 192 byte line amortizes latency
 - Average miss cost: 0.1 – 0.2 CPI
Multi-Channel Scatter/Gather I/O

- **Packet and cell network I/O**
 - IP and ATM networks
 - 100 Mbps full duplex, pin-efficient

- **TDM sample stream I/O**
 - Circuit and AAL1 networks
 - Bit-serial ports

- **Multi-channel scatter/gather**
 - Ingress/egress ring buffers in Cluster or Shared Memory
 - Classify ingress packet/cell, DMA to ring buffer
 - Assemble egress packets from chained DMA buffers
 - Ring buffer synchronization
Efficiency for low power

- **Scalable multi-processor parallelism**
 - Many small DSPs exploit channel task parallelism
 - Higher efficiency than fewer large VLIW DSPs

- **Shared program memory**
 - Significant reduction in area and power vs. DSP farms
 - Instruction caches reduce memory demand

- **Cluster memory shared by DSPs and CP**
 - Enables scalable DSP array, pool scheduling
 - Vector DSPs reduce memory demand

- **Avoid task preemption, minimize overhead**
 - No cycles wasted on DSP task preemption

- **Balanced DSP/RISC MCPS and memory**
 - Channel density typically limited equally
Calisto™ BCM1510 Implementation

• Implementation
 – 130 M transistors
 – .13µm CMOS -G
 – 166 MHz clock
 – 1.2 V core, 2.5 V I/O
 – 1.2 Watts
 – 239 BGA 19x19 mm
 – Q1/2002 production

• Low power design
 – Extensive clock gating
 – Low power pipelined busses

• RAM defect repair
 – Redundant rows and columns
 – Manufacturing test, laser repair

• 16 SpiceEngine DSPs
 – 2.7 GIPS
 – 2.7 GMACS, 26.6 GOPS
 – 16 KB Vector registers
 – 18 KB Cache

• 5 RISC Processors
 – 830 MIPS
 – 40 KB Cache

• 768 KB Shared Memory
 – 10.6 GB/sec bandwidth

• 1 MB Cluster Memory
 – 18.6 GB/sec bandwidth

• Multi-channel I/O
Calisto™ BCM1510
OS Low Latency Scheduling

• Multi-channel real-time OS
 – Develop application service stack for single channel
 – OS maps each channel to a periodic per-frame channel task
 – OS/MMU restricts tasks to access only assigned channel memory

• Schedule per-frame channel tasks in a periodic window
 – Combine up/down, DSP/packet processing in one per-frame task
 – Run each per-frame task to completion, within known deadline
 – Zero cycles wasted on SE task preemption

• OS schedule minimizes longest processing latency
 – Stagger channel tasks relative to input frames, schedule output
 – Highest priority task gets next available SpiceEngine
 ➔ Achieves less than 250 µsec output packet jitter

• OS distributed across clusters
 – Each CP manages its cluster resources
BCM1510 Gateway Performance

• Calisto Gateway xChange™ software
 ➔ Complete carrier-class VoP gateway service suite
 – ITU bit-exact vocoders, G.7xx, GSM, BroadVoice, …
 – 64/128 msec adaptive line echo cancellation (ECAN)
 – Voice activity detection, comfort noise generation
 – DTMF tone detect/generate, tone relay, fax/modem detect
 – Fax relay, Fax modems, T.38 FoIP, AAL2 Annex M
 – Packet interface: IP/RTP/UDP, ATM AAL1/2/5, adaptive jitter buffer
 – Conference mixing, in-band signaling, remote test, encryption

• Breakthrough density for VoP Gateways
 – 240/220 channels G.711 VoP, 32/64 msec ECAN, 5 mW/channel
 – 184 channels G.711 VoP, 128 msec ECAN
 – 120 channels G.729a VoP, 64 msec ECAN
 – 104 channels G.729ab VoP, 128 msec ECAN, T.38 Fax relay
 ➔ Enables 2,016 channel OC-3 gateway blade with 10 chips
Calisto™ OC-3 Gateway Blade

- Simple array of 10 Calisto™ BCM1510 chips
- Carrier-class multi-service Gateway xChange™ software
 ➔ Enables 2,016 channel OC-3 packet voice gateway blade
Calisto™ Summary

- Multi-channel multi-service communications platform
 - Integrated multi-processor system
 - Balanced performance and memory
 - Consistent real-time performance
 - Flexible C programmable platform

- Efficient low-power architecture
 - Appropriate use of parallelism
 - Shared resources
 - Vector DSPs reduce memory usage
 - Low power design and implementation

- Tightly coupled OS and software
 - Enables carrier-class gateways

Calisto™ BCM1510:
- 16 SpiceEngine DSPs
- 5 Control Processors
- Multi-channel I/O
- 1.75 MB Memory
- .13µm CMOS
- 166 MHz
- 1.2V, 1.2 Watts
- 239 BGA 19x19 mm
- Q1/2002 production