output Adaptive Packet Processor (oAPP)

Olivia Wu
Nikhil Jayaram
oAPP – output Adaptive Packet Processor
oAPP – Shipping in PRO/8000 series

PRO/8801

PRO/8804

PRO/8812
oAPP – Agenda

oAPP
- Features
- Top-Level
- Blocks
- Design challenges
- Design flow
- Q & A

PRO/8812
- System
- Architecture
- Key concepts
PRO/8812 – System

- 2 DC Power Entry Modules
- 2 Route Processors
- 3 Switch Cards
- 12 40Gbps Line Cards
- 48 10Gbps Media Adapters
- Air Filter
- 2 Fan Assemblies
• iAPP and oAPP on Linecard
• 4 Media Adapters (MAs) plug into Linecard
• iAPP performs input processing
• oAPP performs output processing
oAPP

High performance
• 40 Gbps
• Non-blocking
• Traffic Management
• Encapsulation

Programmable
• QoS
• Encapsulation

Fully featured
• Shaping
• Accounting
• QoS
• Multicast
• Fragmentation

Robust
• OIR
• BIST
• ECC/parity
• CRC24

Design challenges
oAPP – High Performance

Active Switchcard (A)

Inactive Switchcard (B)

Active Switchcard (C)

Counters SRAM

Multicast SRAM

40 Gbps MAs

Flow-control from MAs
oAPP – Fully Featured

Cell Notifications

- Interface
- Q Selection

Cell Requests

- Interface
- Packet Scheduler
- Engine Scheduler

Buffer

Cells

Packet Scheduler

Engine Scheduler

Encapsulation Engines

Assemblers

MA
MA
MA
MA
oAPP – Fully Featured

• Accounting
 • Precise packets and bytes
 • Per port
 • RED drops
 • Metering drops

• Multicast replication

• Fragmentation
oAPP Programmable – Queue Selection

- Queue and group-queue rate-shaping
- Selectable per interface
- Disciplines currently programmed:

- **STRAIGHT PRIORITY**
 - High Priority
 - Low Priority

- **DWRR**
 - Equal Priority
 - 5% 18% 47% ...

- **PRIORITY DWRR**
 - High Priority
 - | A | B | C |
 - | 90% | 10% | 40% ... 27% 34% |

- **DWRR PRIORITY**
 - 70% 18% 12%
oAPP Programmable – Encapsulation Engines

- **Multiple Encapsulation Engines**
 - Fully programmable
 - Easily add new encapsulations

- **Encapsulation engine**
 - Modifies packet
 - L2 encapsulation
 - Physical port identifier
 - Send cells to Assembler
oAPP Robustness – Switchcard Failover

- **Active Switchcard (A)**
- **Inactive Switchcard (B)**
- **Active Switchcard (C)**

To MAs

State for SC A

State for SC B
oAPP Robustness – Reliability

- ECC/parity
 - On-chip SRAM
 - Off-chip SRAM
- BIST & repair
- End-to-end packet CRC-24
- Inter-chip
 - CRC
 - Parity
 - ECC
- Internal consistency checks
oAPP Design Challenges

- **Speed**
 - 40Gbps
 - 100+ Mpps
 - 350 MHz
 - 0.18um copper CMOS

- **Scale**
 - Programmable engines
 - 950KBytes SRAM
 - 137M transistors
 - 425 sq mm

- **Analog**
 - 170 2.5 GHz serial links
 - Multiple clock domains
 - Power
oAPP Design Challenges – ASIC

- **Speed**
 - 40Gbps
 - 100+ Mpps
 - 350 MHz
 - 0.18um copper CMOS

- **Scale**
 - Programmable engines
 - 950KBytes SRAM
 - 137M transistors
 - 425 sq mm

- **Analog**
 - 170 2.5 GHz serial links
 - Multiple clock domains
 - Power
oAPP Design Challenges – COT

• **Speed**
 - 40 Gbps
 - 100+ Mpps
 - 350 MHz
 - 0.18um copper CMOS

• **Scale**
 - Programmable engines
 - 950KBytes SRAM
 - 137M transistors
 - 425 sq mm

• **Analog**
 - 170 2.5 GHz serial links
 - Multiple clock domains
 - Power efficient
oAPP Design Challenges – COT
oAPP – Summary

High Performance
Shipping
Robust
Programmable
Full-Featured
High Performance
COT

PRO/8801
PRO/8804
PRO/8812
<table>
<thead>
<tr>
<th>Procket VLSI Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>VLSI IP & Expertise</td>
</tr>
<tr>
<td>System/Chip Architecture</td>
</tr>
<tr>
<td>Design/Verification</td>
</tr>
</tbody>
</table>

VLSI Services
2.5 GHZ Serial Links in 0.18 and 0.13 um

- Source synchronous
- Very low BER
- 48 inches backplane trace + 2 connectors
- Multilink bundling
- Low power (<200mW in 0.18 um)
- oAPP has 170 links – other Procket chips more than 250
Procket VLSI Development

VLSI IP & Expertise

System/Chip Architecture Design/Verification Serial Link SRAM

High-performance embedded SRAM

• Creation of any configuration
• 500MHz designs achieved in 0.18
 • 2-port and 4-port
• Row/column redundancy
 • RAMBist design for test and reliability
Procket VLSI Development

VLSI IP & Expertise

- System/Chip Architecture
- Design/Verification
- Serial Link
- SRAM
- Libraries

Standard-Cell and IO Library Design

- High speed/low power FFs
- Automated RTL to I/O Frame generation
- Proprietary clock distribution
 - reduced power and clock skew
Packaging

- *Flip-Chip CGA, HITCE glass ceramic*
 - 16 GHz bandwidth
 - 58 mm. Body size
 - 20 layers
- *HiTCE improves reliability*
- *In-house automated design*
Procket VLSI Development

VLSI IP & Expertise

System/Chip Architecture Design/Verification Serial Link SRAM Libraries Packaging

Backend/P&R:
- Customize around standard tools
- Internal development where necessary
- Custom clock distribution
- RTL freeze to GDS TO in 2 weeks!
- ECO acceptance 2 days before GDS TO
Procket VLSI Development

VLSI IP & Expertise

<table>
<thead>
<tr>
<th>System/Chip Architecture</th>
<th>Design/Verification</th>
<th>Serial Link</th>
<th>SRAM</th>
<th>Libraries</th>
<th>Packaging</th>
</tr>
</thead>
</table>

Test & Product Engineering

- **DFT methodology**
 - Highest test and fault coverage
- **High speed tests at wafer and module**
 - Process
 - Automated test vector translation
 - VLSI and product qualification
 - Burn-in and ESD tests
 - Delay and transition fault speed sorting
Procket VLSI Development

VLSI IP & Expertise

<table>
<thead>
<tr>
<th>System/Chip Architecture</th>
<th>Design/Verification</th>
<th>Serial Link</th>
<th>SRAM</th>
<th>Libraries</th>
<th>Packaging</th>
</tr>
</thead>
</table>

Process/Yield Enhancement

- Yield calculation/enhancement and FA
- Tune process
- Bit mapping and analysis of all RAMs
- Process/speed monitoring
- Data correlation
- Yield tracing
oAPP – Procket VLSI COT Development

VLSI IP & Expertise
- System/Chip Architecture
- Design/Verification
- Serial Link
- SRAM
- Libraries
- Packaging

VLSI Services
- Backend/P&R
- Test & Product Eng.
- Process/Yield Enhancement

© 2003 Procket Networks, Inc. All rights reserved.