Continuum Security Processor
Micro-Architecture Overview

Srinivas Mantripragada, Architect
Outline

- Motivation
- Obstacles and Limitations
- Platform
- Continuum Security Processor (CSP)
- Compiler Technology
- Summary
Motivation

- Today’s enterprise server farms require high performance equipment to perform fast TCP and HTTP protocol processing.

- Security features such as high performance SSL termination and intrusion prevention are fast becoming de-facto requirements.

- Equally important requirements are control-plane tasks, e.g. easy traffic management / classification capabilities combined with powerful policy management.
Obstacles and Limitations

- Limitations on general purpose solutions:
 - **General purpose architectures:**
 - Single-threaded with good instruction-level parallelism (ILP). Don’t scale well for web applications with massive amounts of thread-level parallelism (TLP) present.
 - Incur large context switch overheads, interrupt latencies.
 - Insufficient memory and I/O bandwidth.
 - **General purpose protocol solutions:**
 - Quickly suffer from poor code and data locality with increase in traffic rate.
 - Software-only SSL solution approach is compute intensive with poor performance, e.g. 100x slower than hardware approaches.

- Limitations on network packet processors:
 - Perform well for stateless applications. Pre-dedicated code memories way too small for stateful TCP and higher layer protocol processing.
 - Multi-processor designs lack good support for inter-process synchronization.
 - Work well for narrowly-focused problems, e.g. fast search engines.
Primary goal is to achieve high performance TCP, SSL and upper layer protocol connection rate.

A new architecture which allows high extraction of TLP and ILP. Multithreading and multiprocessing single chip solutions seemed obvious choice.

- Deep multithreading to hide intra-thread memory latencies.
- Extensive multiprocessing to facilitate large amounts of thread parallelism.

Efficient shared cache design to achieve large amounts of scatter-gather thread parallelism with relatively low inter-process synchronization and data-sharing delays.

Good software (OS, Compiler) support to efficiently map software threads to hardware.

Security and key TCP features done in hardware.
Platform

World’s Most Powerful Security ASIC

- 60M+ Transistors
- Full TCP Termination
- Full SSL Termination
- 1M+ concurrent connections
- 6,000 SSL trans/sec

- Supports 8 Million specialized timers
- 128GB of directly addressable DRAM
- Shared L2 and Dedicated cache per CPU
- 280 Gigabit/second Non-blocking switching fabric with distributed buffering
- 48 multi-threaded CPUs
- 192 discrete processing threads

Highly extensible interconnect via patent-pending high-speed interface or PCI

SSL, TLS, RSA
3DES, RC4, SHA-1, MD5
Random Number Generation
ISA

- Variable length instructions, 1, 2 or 3-byte. Average: ~1.8 bytes.
- Accumulator-based architecture.
- Both direct or segmented-based addressing schemes allowed:
 - Allows indexing up to 63-bits of virtual address space.
 - Segment registers also defines the address space attributes, e.g. cacheability, write-thru, inexact etc.
Content Processors

- 48 multithreaded processors, total 192 threads.
- Each thread has dedicated GP registers (8), segment registers (4) and private stack area.
- Execution resources shared by multiple threads, thread-swapping rules include:
 - Taken branches and call instructions cause a thread-swap.
 - Load requests which miss in DCache causes a thread-swap.
- All hazards, e.g. register/load/thread hazards resolved by compiler at static time.
Instruction and Data Cache

- **Instruction Cache**
 - Fully associative, 64-bytes/line.
 - Shared by 16 threads among 4 processors.
 - Thread-arbitration engine round-robins the Ifetch requests coming from 4 processors.
 - Each processor does its own inter-thread arbitration.
 - Supply 8 instruction bytes to decoder per cycle, for current active thread.
 - A separate 8-byte prefetch buffer.

- **Data Cache**
 - 4-way set associative, 16-bytes/set.
 - Shared by 16 threads among 4 processors.
 - Thread-arbitration engine roundrobins the Dfetch requests coming from 4 processors.
 - Each processor does its own inter-thread arbitration.
 - Multiple Dfetch miss requests to same address are coalesced.
L2 Cache

- 8-way set-associative, 64 bytes/line.
 - 8 cache blocks total, 2 cache-blocks per DRAM controller.
 - Shared by all clients, e.g. Processors, MAC, Scheduler etc.
 - Shared by both ICache and DCache.
- Non-blocking cache.
- Aggregate cache peak bandwidth, up to 38.4 Gbps.
- LRU replacement policy.
- Consecutive 64-byte addresses color to different banks to minimize unnecessary conflicts.
- Application-specific primitives supported, e.g. cache-line push/clear, atomic increment/decrement on 2-byte aligned addresses, etc.
Security Features

- High performance public key processor
 - 6000 1024-bit (RSA, Diffie-Hellman, DSA) transactions per second.
 - High speed multiplier block controlled by dedicated firmware code.
- Integrated symmetric key processor
 - DES, 3DES, MD5, RC4, SHA-1
- Concurrent public key and symmetric key processing.
- Built-in random number generator.
Specialty Hardware

- Affinity-based hardware scheduler for efficient mapping of software threads to processors.
- Checksum block for fast TCP/IP header and payload verification (up to 4 Gbps).
- Timer block supports up to 8 million independent timer counters.
- High speed non-blocking switch fabric ties together all CSP components with aggregate bandwidth, up to 280 Gbps.
- MAC, Backplane and PCI support.
Compiler Technology

- Industry-leading set of performance optimizations.
- GCC 3.0 front-end, CSP 2.0 backend.
- Major components:
 - Global optimizer
 - CSP-specific code generator
 - Feedback design and hot-cold optimizations
 - Inter-procedural analysis and code layout
- Single-Static Assignment (SSA) is used as intermediate representation.
- Global optimizations include:
 - Global register allocation using SSA conflict graph.
 - Aggressive global scheduling before (and after) register allocation.
 - Tree-height reduction optimizations.
 - Control flow optimizations
 - Block merging, tail-duplication, branch collapsing etc.
Compiler Technology (contd.)

- Code generation improvements:
 - Constant folding, dead-code removal.
 - Local and global common sub-expression elimination (CSE).
 - Iterative re-associative optimizations.
 - Automatic data-prefetching for fast linked-lists traversals.
 - Aggressive aliasing support for easy disambiguation of memory references.
 - CSP-specific ASM support to embed hand-tuned assembly in C.
Feedback design and hot-cold optimizations:

- Multi-thread aware insertion of instrumentation/profiling code.
- Framework supports both path-profiling and call-profiling mechanisms.
- Hot and cold paths are identified, CFG restructured to favor hot paths, cold paths from each procedure are then grouped into a separate cold section.
Compiler Technology (contd.)

- Inter-procedural analysis and code layout:
 - Inter-procedural directed call-graph (IP-DCG) constructed using path and call profile data.
 - Initial set of hot call-nodes and call-chains identified using IP-DCG.
 - Code layout across procedure boundaries then performed selectively at cache-line boundary. Appropriate IP-DCG adjustments are made.
 - This reduces callee call overhead penalty by prefetching callee instructions before the actual call is made.
Implementation and Performance

- Implementation
 - 64 M transistors
 - 0.16uM CMOS
 - 150 MHz clock (shipping)
 - Over-clocking to 200 MHz
 - 1.5 V core, 3.3 V I/O
 - 10 Watts
 - 17x17 mm die size
 - Q1/2002 production

- Performance
 - 1 Mil. Simultaneous TCP connections
 - 15,000 HTTP transactions
 - 6000 SSL sessions/sec
 - Up to 4 Gbps bulk encryption rate
 - Up to 5 Gbps of backplane interconnect traffic
Summary

- Continuum Security processor generates industry leading SSL performance, provides foundation for future NetContinuum family of security products.
 - Integrated multi-processor and threaded system.
 - Fast security and cryptographic processing in hardware.
 - System architecture inherently scalable to support large amounts of ILP and TLP, going forward.
 - Fast back-plane channels to support multi-CSP systems.
- Tightly coupled software and hardware
 - Highly optimized OS, Compiler.
Questions?