Architecture of the Intel® MXP5800 Digital Media Processor

Lou Lippincott, Chief Architect
Arup Gupta, Chief Technology Officer
Glenda Dorchak, VP and General Manager
Consumer Electronics Group

MXP5800 Application Space

- Document Processing (Segmentation Algorithm)

Spatial Rendering Hints

- Foreground U1
- Selector S1
- Background L

Planar Rendering Hint

High-efficiency is achieved from limiting the application space
MXP5800/5400
Architectural Objectives

“Performance of an ASIC with the programmability of a processor”

Architectural Tradeoffs

- Flexibility - for performance
 - Limited re-configurability in small PEs
- Large application space - for efficiency
 - Example: MXP5800 does not do Video Processing (well)

In its application space, MXP performs best
MXP5800 Architecture Efficiency

- **Architecture Benchmarking Example**
 - Compare MXP-5800 HWAs to 128-bit SIMD engine
 - Single Tap Filter and Variable Tap Filter units
 - 121 (11x11) input samples of Data processed for each “a” output
 - 121 (11x11) “a” outputs used for each “b” output
 - 14,641 F11 operations
 - Filter tap on “b” output can change on a pixel-by-pixel basis
 - Select allows 1/4 tap increments
 - normalized and interpolated “b” outputs

![Diagram](image)

- 128-bit SIMD = 14,500 clocks
- MXP5800 = 10 clocks

MXP5800 Performance

- **Segmentation algorithm example**
 - Segmentation algorithm separates documents into image planes
 - Allows different compression techniques for each plane (image type)
 - Gives very high compression ratios
 - Very complex, data-intensive algorithm

- Runs on one MXP5800
 - Performs @ 12ppm
 - Less than 3W typical
 - Easily scaled to multiple chips
- Replaces ~8 competitive parts
 - (More general-purpose arch)
 - (Supported by C compilers)

High-efficiency is achieved from specialization
MXP5800 Architecture Overview

- MXP5800 is a high performance image/media processor
 - 8 MIMD processing engines connected by a streaming mesh
 - Each MIMD engine has five 16-bit ALUs with dual MAC units
 - Total of 40 ALUs & 16 MACs
 - 36 channels of DMA supporting dual banks of DDR
 - PCI and Expansion Interfaces for data movement
 - Hardware assist for filtering and compression

MXP5400 Architecture Overview

- MXP5400 is a high performance image/media processor
 - 4 MIMD processing engines connected by a streaming mesh
 - Each MIMD engine has five 16-bit ALUs with dual MAC units
 - Total of 20 ALUs & 8 MACs
 - 18 channels of DMA supporting dual banks of DDR
 - PCI and Expansion Interfaces for data movement.
 - Hardware assist for filtering and compression
Detailed ISP Overview

- Hardware Accelerators
- Local Memory
- Sixteen – 16-bit General Purpose Registers (GPRs)

Instruction Memory

ALU

MAC

GPE

MACPE

IPE

OPE

MACPE

ALU

Sixteen – 16-bit General Purpose Registers (GPRs)

MAC

ALU

ALU

ALU

ALU

ALU

GPE Architecture

- All PEs run the same baseline instruction set
- 128 instruction memory per PE
- Sixteen 16-bit local registers
- Single cycle execution for >97% of instructions
- 4 stage instruction pipeline
- Dual mode (8-bit operands)

* All data paths 16-bit unless noted otherwise
IPE/OPE Architecture

- Same core architecture as GPE but with direct interfaces to the Quad Ports
- IPE provides read access to Quad Ports
- OPE provides write access to Quad Ports
- Quad Port references made through instruction source/destination value

MACPE Architecture

- MACPE has same core architecture as GPE but with a 16x16 multiplier and an extended accumulator (40-bit)
- ALU operations have a 40-bit accumulator
- Mode unit (M unit) for:
 - Shifting
 - Clipping (hi & lo)
 - Rounding

* All data paths 16-bit unless noted otherwise
PE Instruction Set Summary

All PE Baseline Instructions
- **ALU ops:** absolute, add, clear, logical ops, min/max, mux, mode, nop, pack/unpack, read/write instruction memory, store acc, shift, subtract, test bit
- **Data movement:** load
- **Control ops:** call/rti, interrupt, compare, jump, loop, repeat, stop

MACPE 16 x 16 Multiplier
- **Multiplier:** basic multiply, multiply/accumulate (MAC), output modes

GPE bit rotation
- **Bit rotation:** Extract one bit and load in another register at specified bit location.

IPE/OPE Quad Port access
- **Quad Port access:** access provided by quad port operands

On-Chip Local Memory

- **DDR 266 x16 Interface**
- **24 KB Data RAM**
- **8 KB Data RAM**
- **18-Channel DMA**
- **32-bit 66 MHz PCI**
- **Expansion Interface**

13

14
Hardware Accelerators

These are average performance numbers. Performance varies depending on the input data.

EI and Quad Port Routing Example
MXP5800 is a Scalable Architecture

Controller functionality required for MXP5800:
- Download micro-code
- Initialize registers
- Set-up DMA channels
- Service Interrupts

MXP5800 Architectural Summary

- 40 independent parallel resources
 - Optimized for the processing of image / media data
- Hardware acceleration
 - VTF, STF, G4, VLE, IDCT/DCT
- High performance streaming mesh network
 - Dynamic links allow maximum system performance
- Scaleable architecture
 - From 1 ISP to multiple chips
Questions?