HORUS

Large Scale SMP for Opterons

Rich Oehler
Rajesh Kota
23 August 2004

Outline

- Newisys, Inc. A Sanmina-SCI company
- Limits of Scalability on Opteron
- Horus – Our Custom ASIC
- System Management around Horus
- Summary
- Horus Team
Newisys, Inc

- Founded in July 2000
 - Designing Enterprise Class Opteron Based Server Systems for the OEM Market
 - Current products include a 2P, 1U and a 4P, 3U systems
- Entered into a Strategic Alliance with AMD for access to Coherent HyperTransport
 - Began design of a custom ASIC to enable large SMP (8 to 32 way) Opteron Systems
- Acquired by Sanmina/SCI in July 2003
- Readying 8,12,16 and 32-way systems based on our custom ASIC
- Currently about 110 employees, ~ 90 engineers

Limits of Scalability on Opteron

- Opteron provides for up to 8-way ‘glueless’ SMP solution
- Opteron has very good Scaling to at least 4-way
- Performance of important commercial applications is challenging above 4-way due to:
 - Link interconnect topology (wiring and packaging)
 - Link loading with less than full interconnect
- Going above 8-way needs both:
 - Fix to number of addressable elements
 - Better interconnect topology
The Ultimate Answer to Performance Headroom

- Pay as you go flexibility with the ability to change server resources as real-time IT needs change
- Enables modular systems
 - Traditional 4-32 way SMP(64 way with dual core)
 - Blade frame 2-16 way SMP(32 way with dual core)
- The ExtendiScale Architecture delivers:
 - Pay as you grow budget flexibility
 - Low system cost derived from use of industry standard parts
 - Mission Critical ready: Availability, Manageability, Reliability

4 Socket (Quad) Opteron System extended with Horus

Currently shipping Newisys 4300 platform
HORUS – Our custom ASIC

- Horus solves
 - Scalability (to 32 sockets) using Coherent HT links
 - Remote memory access latency (RDC, 64MB)
 - Local memory access latency (DIR, 50% sparcity)
 - Remote link bandwidth usage (RDC & DIR)

- Horus provides RAS features equivalent to those present in large RISC/UNIX systems using Opteron industry standard servers

- Horus extends every glue-less SMP feature of Opterons to multiple quads.
 - MMIO, PCI-Conf., PCI-IO, Locks, System Management, Interrupts and SEM

Horus Command Path
Horus Data Path

- External links carry cmd & data
- Independent internal links for cmd and data

Data xBar

16B @ 500 MHz
DDR SRAM

Separate data and data request crossbars
4.0 Gbps
64b @ 500 MHz
1 data request/cycle

Local Links
4 Gbps
16b cHT @ 2.0 MT/s

Remote Links
3.75 Gbps/link
12b @ 3.125 GT/s

Other system features in HORUS

- Partitioning
- Programmable protocol engine
- Highly configurable with configuration control registers
- Reliability features
- Machine check features
- JTAG Mailbox
- Performance counters
Vital Statistics

- Technology: 130nm, TSMC, LVOD
- Core frequency: 500MHz
- Die size: 19mm x 18.3mm
- Gate count excluding memory: ~ 10 Million
- Transistor count excluding memory: ~ 38 Million
- On-chip repairable SRAM size: 3.75 MB (from Virage)
- Verilog LOC: ~ 115K + 50K (auto generated) + 20K (verilog libraries)
- Verification LOC: > 700K (Vera, Java, C++)
- IO pin count: 730
- P&G pin count: 479
- Expected power consumption: 35 to 45 W
- Hardmacros: HT, SerDes, PLLs (from Artisan)
- Current Status: Taped out and in TSMC fab
 » Bring up and system validation in Fall 2004

Horus Design Verification

- Multiple Strategy Design Verification
 – C++ / SystemC for original architecture modeling
 – Detailed dynamic performance model using SystemC
 – Object-oriented Synopsys Vera / VCS for RTL simulation environment.
 – Behavioral and Opteron RTL CPU model stimulus
 • Co-simulation with Opteron Northbridge RTL and AMD’s whackers / checkers
 – FPGA prototype of single protocol-engine Horus combining multiple Newisys 2100 servers into single Coherent system.
 – Test chip fabricated and tested with memory interface, HyperTransport Interface, and SERDES
Performance Projections

OLTP Processor Scaling
Glueless vs Horus Based Systems
2.8GHz AMD Opteron with 400MHz DDR DRAM, 2GT HT Links
(Newisys estimate of available Opterons, not an AMD commitment)

System Management

- Horus provides Coherent memory interconnect building blocks, but a complete solution to the single SMP system requires more:
 - Embedded Service Processor and special interconnect hooks
 - Two Service Processors with independent System Management code
 - one primary and one redundant in each system.
 - System Management code deals with configuration control, partitioning, various RAS issues and managing the various hardware hooks for Power On/Off, Reset, Hard and Soft IPL, HT Stopping and Restarting, etc.
Summary

- Horus is based on AMD’s Coherent HT protocol
 - Relies on Home based, single point line synchronization
- Horus extends AMD’s protocol by
 - Significantly increasing the size of the largest systems
 - Introducing a Remote Data Cache for rapid presentation of cached data
 - Adding a Remote Directory for probe filtering
 - Providing RAS at the level expected of enterprise class servers
- Horus remote link technology allows distinct quad implementations, using industry standard parts, to be coupled into very large SMP implementations
- Newisys is building systems based on Horus
Building Larger Configurations

Typical 16-way

Typical 8-way

Typical 12-way

Up to 32 Sockets (8 quads) possible

Scalability

- One Horus chip in each box. And each box can have upto 4 Opteron sockets (aka Quad)
- Horus uses Coherent HT protocol to talk to Opterons
- Using Horus and IB cables, different quads with independent clock and power domains are connected via remote links
- The protocol extensions used on remote links enables us to run Coherent protocol on cables
- Horus looks just like an Opteron to other Opterons in the quad and it abstracts all other Opterons (CPUs, MCs and IOs) in remote boxes
- Horus has the protocols necessary to maintain coherency across all quads
Remote memory access latency

- Horus supports 64MB of Remote Data Cache (RDC). Requests to Memory lines that hit in RDC will result in the transaction completing 4.7x faster than not having RDC
- The cache is implemented using off-chip SRAM (500MHz or 250MHz DDR)
- The tags for the RDC are on-chip
- Only data whose home is located in remote quads is cached in RDC

Local memory access latency

- Horus also has a Directory that keeps track of the state of local memory lines
- For each local memory line that is cached remotely Horus maintains its state (Shared, Owned, Modified) and Occupancy Vector
- Directory is sparse and will cause eviction of memory lines from remote quads if needed
- For requests from local CPU accessing local memory a miss in Directory will cause the transaction completing 3x faster than not having Directory
Improves bandwidth usage

- More hits in RDC means fewer requests on remote links
- More misses in DIR means fewer probes on remote links
- Due to DIR, remote probes are not broadcasted but directed to specific quads
- With RDC and DIR combined there is significant reduction in bandwidth usage on remote links

Miscellaneous Features

- Apart from handing transactions targeted at DRAM address, Horus handles transactions to local and remote MMIO, PCI-Config, PCI-IO, Locks, System Management, Interrupts and SEM
- All functions supported by the Opterons for glue-less SMP are extended by Horus across multiple boxes
Partitioning

- Hardware hooks present in Horus to allow dynamic partitioning on remote links. Support is required in OS to achieve dynamic partitioning
- Full hardware support present in Horus to hot plug and unplug remote links. Horus can interrupt SP on hot plug, unplug and errors on remote links
- Static partitioning can be done on both local and remote links. BIOS can program HORUS to enable/disable different remote links
- Horus can’t stride multiple partitions. Horus and Opterons have features to fence one partition from another partition

Reliability Features

- ECC on all on-chip and off-chip SRAMs (double bit detect, single bit correct)
- Scrubbing on all on-chip and off-chip SRAMs
- Guaranteed exactly once delivery protocol on remote links
 - All soft errors are recoverable (Disparity, Out of Band, LOS, FIFO overflow on physical layer. CRC mismatch, Loss of packet, Seq ID mismatch, illegal packet)
 - Re-initialization of remote links without box reset.
 - BOX ID exchange on link up
Machine Check features

- Extensive error detection, correction and logging with in HORUS
- All Errors (both Fatal and NON-Fatal) can be programmed to cause
 - No action
 - Interrupt SP
 - Flood the links (bring system down)
- Side band access to configuration, performance and debug registers through JTAG
 - Used by Service Processor extensively to track the health of the memories, links, etc.

Performance Counters

- Several performance counters implemented in Horus that will be useful in analyzing and fine tuning several aspects of its design and operation
 - Over 50 individual counters simultaneously monitor transaction flow, cache performance etc.
 - Highly configurable and programmable. Most counters can be coupled with an address range
 - Counters are accessible via PCI-Config
Transaction Visualization Tools