Low Power AMD Athlon™ 64 and AMD Opteron™ Processors

Hot Chips 2004
Presenter: Marius Evers

Block Diagram of AMD Athlon™ 64 and AMD Opteron™

- Based on AMD's 8th generation architecture
 – AMD Athlon™ 64 and AMD Opteron™ differ in the availability of some features
- Based on the x86-64 instruction set
- Out-of-order, 9-issue superscalar processor
- Integrated Northbridge, DDR memory controller, and HyperTransport™ links
- Supports glue-less multiprocessing
Objectives for Low Power
AMD Athlon™ 64 and AMD Opteron™

- High performance in power constrained environment
 - 55W and 30W for AMD Opteron™ server processor
 - 62W, 35W and below for Mobile AMD Athlon™ 64 processor
- Improved performance at low voltage
- Reduced power consumption in low power modes
- Low power goals align well between server and mobile markets

High Performance, High Efficiency!

Performance in a Power Constrained Environment

- A processor can perform at several power / performance points
- Different points are found by changing
 - Frequency
 - Voltage
 - Process targeting (if available)
- In a power constrained environment: power efficiency leads to performance
- Many market segments are becoming power constrained because processor power keeps increasing
Performance in a Power Constrained Environment

- We believe performance within a given power envelope is more important than just raw performance
 - Cost-effective cooling solutions across all segments
 - Power delivery to and cooling of server racks and data centers
 - Battery life for mobile applications
- Blindly pushing MHz as a metric for performance is bad for power
 - Power efficient processors have high performance at a lower frequency
 - AMD has spearheaded efforts to use application performance instead of GHz for product naming
- Power efficiency must be addressed at all levels
 - Process technology
 - Circuits / implementation
 - Architecture
 - OS (support for low power states)
 - Systems

Outline

- Low Power Process Technology
- Improved Low Power Modes
- Reducing Static Power
- Reducing Dynamic Power
- Summary: What Does This Enable?
Low Power Process Technology

- No bottom capacitor in source/drain
- Overlap cap still dominates
- Tighter layout rules reduce wire parasitics
 - No N-wells/body ties
 - No antenna diodes required
 - N-active and P-active can abut
Low Power Process Technology:
Process Targeting for Low Power Processors

• Thicker gate oxides (GOX)
 – Reduced static gate leakage caused by tunneling
 – Reduced gate capacitance
 – More reliable (Great for servers)

• Longer nominal channel length reduces static leakage

• Dual Gate Oxide: two gate oxide thicknesses on die
 – Thinner GOX for core transistors – not as thin as desktop process target
 – Thicker GOX for on-chip decoupling capacitors – reduces gate leakage
 – Thicker GOX transistors in I/O power domain

• Three threshold voltages
 – High Vt transistor has low leakage, low performance
 – Medium Vt has higher leakage and 10% higher drive current
 – Low Vt has very high leakage and another 10% higher drive current
 – Vt levels (and therefore leakage) are targeted for low power

Improved Low Power Modes
Improved Low Power Modes: Overview of Improvements

- Low power modes were already optimized on previous revisions
 - Clocks and voltage were ramped down
 - Other optimizations outside the scope of this talk
- Every mW counts in these modes, so several new improvements were done:
 - Disable I/O circuitry in low power states
 - Tri-state DDR interface
 - Disable I/O compensation circuit
 - Pulls static current through a resistor on the board
 - Sets I/O drive strength as temperature varies over time
 - Disable termination structures in “bypass clock” input
 - Only used in test modes, so disable all other times
 - Disable I/O level shifters in low power states
 - Level shifters from core to I/O power domain drive static current
 - Disable during low power states – the pins aren’t wiggling
- Remove static pre-chargers
- Architectural and micro-architectural improvements

Improved Low Power Modes: Remove Static Pre-chargers

- Remove static pre-chargers for arrays that operate in low-power modes
- In high frequency operation, identical power consumption
- In low frequency operation, full-swing bit lines fully evaluate and stop drawing current
Improved Low Power Modes:
Architectural Power Savings Feature

• AltVID (Alternate Voltage ID)
 – Low power modes already lower VDD in low power modes by driving
 a 5-bit VID code to the voltage regulator (VR) on the motherboard
 – AltVID is a method for ramping the voltage down further after the
 clocks have ramped down.
 – This programmable code is sent to the VR to reduce the processor
 voltage to the minimum operational level
 – Reduces static power by ~ 50-100 mW

Improved Low Power Modes:
Micro-architectural Power Savings Feature

• Processor HALT state is optimized to save power in an innovative way
• HALT is a microcode loop, waiting for interrupts
• Clocks are automatically ramped down
• But because microcode is running, the Register File, reorder buffer,
 reservation stations and microcode ROM macros are still being used.
• Microcode sets a control bit that disables instruction retirement
 – Causing the instruction reorder buffer to fill up
 – Which in turn stalls instruction dispatch
 – Which in turns stalls the microcode engine
 – Thus disabling macro accesses without adding logic to timing critical paths
• Saves about 300 mW
Reducing Static Power

Reducing Static Power: Voltage Threshold (Vt) Selection

- Vt selection is a large lever for both performance and static leakage
 - High Vt cells are slow and have very low leakage
 - Low Vt cells are fast and have high leakage
 - We select a small set of cells to make low Vt to improve performance
 - Most cells must remain medium or high Vt to maintain low leakage
- Vt selection for low power microprocessors has unique issues
 - Speed improvement from lowering Vt is larger at low voltages
 - Critical paths should be all low Vt to improve frequency
 - Therefore more low Vt cells are needed to optimize low voltage operation compared to high voltage operation
 - Vt choices must be appropriate for all expected operating conditions and process variations
 - Mobile processors need to be optimized for a larger spectrum of voltages than desktop processors
Reducing Static Power: Vt Selection Algorithm

- We developed a new iterative Vt selection algorithm
- Multiple voltage/process corners were considered
- Vt selection was based on bottleneck detection
 - The timing and leakage impact of lowering the Vt of a cell was also considered
- Low Vt usage was reduced by 25-35% compared to our previous path based algorithm

Reducing Static Power: Timing Optimizations!

- If a path meets timing with medium Vt cells, it does not require low Vt
- We focused a large design effort on improving sub-critical timing paths to decrease low Vt usage
 - Special timing reports highlighted paths that used the most low Vt cells so these could be fixed first
 - Bottleneck information was also used to target fixes to the most important areas
- Low Vt usage was reduced by 20-30% due to these improvements
Reducing Static Power: Cache Optimizations

- Reduce leakage and increase cell stability in the L1 and L2 caches by using “wimpy-length” transistors
 - These remain long-channel as the process CD is pushed
- (Almost) all transistors in L2 cache are HVT
 - Considerable reduction in static leakage
- The L2 cache accounts for half the die, so these advantages are very significant

Reducing Dynamic Power
Reducing Dynamic Power: Attention to Detail

- We identified high power areas using pattern-based dynamic power simulations
 - Target these areas first using general and custom designed solutions
 - Several patterns were used to identify power hot-spots for different workloads
- In other areas, we reduced power a little at a time
 - Clock gating for flip-flops
 - Improvement of edge rates
 - Capacitance reduction
 - Logic minimization
 - ... and several localized approaches
- Reducing dynamic power requires paying attention to detail

Reducing Dynamic Power: Improved Low Voltage Performance

- Dynamic and static power dissipation are strongly related to voltage
 - Lowering the voltage reduces power
- We focused timing work on low voltage operation
 - Improved timing by 5-10% relative to high voltage operation
 - Improved low voltage roll-off
 - Get same performance at lower voltage
- NB and I/O functionality was optimized to run at the lowest supported voltage
 - Avoid raising voltage for minimal workloads
- Support lower minimum voltages
 - Improves sleep state power
Reducing Dynamic Power:
Lower Minimum VDD

- Minimum VDD is a functionality constraint driven primarily by writeability
- Can only lower chip voltage until memory nodes can’t be written
 - Flops and latches
 - Bit cells
 - Dynamic nodes with keepers
 - Level shifters
- “One-sided” writes won’t work

Reducing Dynamic Power:
Cache Optimizations

- Don’t distribute global clock over the L2 cache
 - Send low-skew clock to the edge of the L2 cache
 - Different cache banks receive timing signals with different delays
 - Pay in latency to synchronize skewed cache results to low-skew global clock
- Compare cache read data to write data and ignore the write if they are equal
Summary
What Does This Enable?

• Improved on chip power
 – Process technology
 – Circuits / implementation
 – Architecture
• Work with industry partners to deliver low power solutions
 – OS
 – Systems
• Low power design enables leadership products
 – Great mobile part
 – Power efficient server parts
 – Dual core solution within normal power envelopes!
Dual Core AMD Opteron™ Processor

- 2 CPU cores on 1 die
- Shared on-chip Northbridge
 - Coherent HT links allow glue-less connection of multiple dual core chips
 - 128 bit DDR interface
- AMD Opteron™ was designed as CMP from the beginning
 - Incremental changes for dual core design
- Programming model is SMP rather than SMT
 - 2 complete CPUs rather than extra 'virtual CPU'
 - OS manages chip as 2 processor SMP system

Authors

Marius Evers
Michael Golden
Mike Leary
Kevin McGrath
Chuck Moore
Trademark Attribution

©Copyright 2004 Advanced Micro Devices, Inc. All rights reserved.

AMD, the AMD Arrow Logo, AMD Athlon, AMD Opteron, and combinations thereof are trademarks of Advanced Micro Devices, Inc. HyperTransport is a licensed trademark of the HyperTransport Technology Consortium. Other product names used in this presentation are for identification purposes only and may be trademarks of their respective companies.