Cell Broadband Engine
Interconnect and Memory Interface

*Scott Clark, Kent Haselhorst, Kerry Imming, John Irish
Dave Krolak, Tolga Ozguner
*IBM Systems and Technology Group
*Rochester, Minnesota
Agenda

- Cell Overview
- Interconnect Challenges
- Bus Interface Controller
- Element Interconnect Bus
- Memory Interface Controller
- Summary
Cell Broadband Engine Key Features

- The first generation CELL processor consists of:
 - A Power Processor Element (PPE)
 - 8 Synergistic Processor Elements (SPE) with Synergistic Memory Flow Control (SMF)
 - A high bandwidth Element Interconnect Bus (EIB)
 - A Bus Interface Controller with two configurable I/O interfaces (BIC)
 - A Memory Interface Controller (MIC)

Diagram:

- **Synergistic Processor Elements for High (Fl)ops / Watt**
- **PPE**
- **SPE**
- **SPU**
- **SXU**
- **LS**
- **SMF**
- **BB (up to 96B/cycle)**
- **PPU**
- **L1**
- **L2**
- **PXU**
- **MIC**
- **BIC**
- **FlexIO™**
- **Dual XDR™**
- **64-bit Power Architecture w/VMX for Traditional Computation**
- **16B/cycle**
- **32B/cycle**
- **16B/cycle (2x)**
Cell BE Interconnect Challenges

- **High Bandwidth**
 - Memory Bandwidth
 - Internal Element to Element Bandwidth
 - External I/O and SMP Bandwidth

- **Flexibility and Scalability**
 - Allow System Configuration Flexibility
 - Modular Internal Bus Structure
Cell Broadband Engine Die
Bus Interface Controller (BIC)
Bus Interface Controller Overview

- Two configurable scalable interfaces
 - 7 bytes total outbound / 5 bytes total inbound chip capacity
 - Rambus FlexIO™ physical
 - 60 GB/s raw bandwidth at 5 Gb/s per differential pair
 - BIF/IOIF0
 - Configurable protocol
 - Broadband Engine Interface (BIF) coherent protocol
 - I/O Interface (IOIF) non-coherent protocol
 - Scalable from 0 to 6 bytes outbound / 0 to 5 bytes inbound
 - Up to 30 GB/s outbound / 25 GB/s inbound in 5 GB/s increments
 - IOIF1
 - IOIF protocol
 - Scalable from 0 to 2 bytes outbound / 0 to 2 bytes inbound
 - Up to 10 GB/s outbound / 10 GB/s inbound in 5 GB/s increments
Bus Interface Controller

- **IOIF Mode Additional Features**
 - **I/O Address Translation and Protection**
 - Two stage segment table / page table lookup with caching
 - 4KB, 64KB, 1MB, 16MB page size support per segment
 - Storage protection at page granularity by device ID
 - Command ordering attributes assigned at page granularity
 - HW and SW load of translation caches
 - **Four Virtual Channels per IOIF**
 - IOIF commands assigned to one of four virtual channels
 - Independent flow control, ordering and resource management per virtual channel
 - **Interrupt Controller**
 - Interrupt presentation, routing and status to PPEs
 - Interprocessor Interrupt support
 - 16 priority levels
Bus Interface Controller

- **Flexible Bandwidth and Protocol through Layered Architecture**
 - Logical Layer
 - Selectable coherent or non-coherent protocol
 - Credit based flow control
 - Transport Layer
 - Packet generation and parsing
 - Asynchronous to Data Link Layer
 - Data Link Layer
 - Packet transmission and reception
 - CRC and retry protocol
 - Physical Layer
 - Configurable interface widths in 1B granularity
 - Supports asymmetric Tx / Rx
Cell BE Processor Can Support Many Systems

- Game console systems
- Blades
- HDTV
- Home media servers
- Supercomputers
Element Interconnect Bus (EIB)
Element Interconnect Bus Overview

- **Coherent SMP Bus**
 - Supports over 100 outstanding requests
 - Address collision detection and prevention

- **High Bandwidth**
 - Four 16 Byte data rings
 - Operates at $\frac{1}{2}$ processor core frequency
 - Up to 96 Bytes / processor cycle. 192 Bytes / bus cycle
 - Over 300 GB/s at 3.2 GHz processor
 - 16 Bytes / bus cycle source and 16 Bytes / bus cycle sink per port
 - 12 Element ports

- **Modular Design for Scalability**
 - Physical modularity for flexibility

- **Independent Command/Address and Data Networks**

- **Split Command / Data Transactions**
Element Interconnect Bus – Command Topology

- “Address Concentrator” tree structure minimizes wiring resources
- Single serial command reflection point (AC0)
- Address collision detection and prevention
- Fully pipelined
- Round robin arbitration
- Credit based flow control
Element Interconnect Bus – Coherent Connection

- BIF Coherent Protocol
- Dual chip configuration without external switch chip
 - Master / Slave AC0
- Multi-chip configuration possible with external switch chip
- Local command processing
 - AC1 root bypass for non-global commands
Element Interconnect Bus - Data Topology

- Four 16B data rings connecting 12 bus elements
 - Two clockwise / Two counter-clockwise
- Physically overlaps all processor elements
- Central arbiter supports up to three concurrent transfers per data ring
 - Two stage, dual round robin arbiter
- Each element port simultaneously supports 16B in and 16B out data path
 - Ring topology transparent to element data interface
Resource Allocation Management

- Optional facility used to minimize over-allocation effects of critical resources
 - Independent but complimentary function to the EIB
 - Critical (managed) resource’s time is distributed among groups of requestors

- Managed resources include:
 - Rambus XDR™ DRAM memory banks (0 to 15)
 - BIF/IOIF0 Inbound and BIF/IOIF0 Outbound
 - IOIF1 Inbound and IOIF1 Outbound

- Requestors Allocated to Four Resource Allocation Groups (RAG)
 - 17 requestors – PPE, SPEs, I/O Inbound (4 VCs), I/O Outbound (4 VCs)

- Central Token Manager controller
 - Requestors ask permission to issue EIB commands to managed resources
 - Tokens granted across RAGs allow requestor access to issue command to the EIB
 - Round robin allocation within RAG
 - Dynamic software configuration of the Token Manager to adjust token allocation rates for varying workloads
 - Multi-level hardware feedback from managed resource congestion to throttle token allocation
Memory Interface Controller (MIC)
Memory Interface Controller (MIC)
Command and Data Flow

- Two independent 32b controllers
- 25.6 GB/s @ 3.2 Gb/s
- 32 read and 32 write queues for each channel
- All accesses are closed page
- SEC/DED ECC
- Speculative read support
- Remote connection to EIB
Memory Interface Controller Overview

- **Capacity**
 - Dependent on XDRAM size & width
 - Minimum of one 32b interface fully connected
 - 2 x 16b - 256 Mb XDRAMs = 64 MB
 - Maximum of 2 x 32b interface fully connected
 - Theoretical Maximum 64 x 1bit - 8 Gb XDRAMs = 64 GB

- **Clocking**
 - The Rambus interface runs at 400 Mhz which is called a Pclk
 - Memory Controller logic runs at ½ the processor frequency = 1.6 GHz with an asynchronous crossing to the Rambus clock domain which also runs at 1.6 GHz (multiplied up Pclk)
 - The MIC dataflow distributes the data to the Rambus interface at 1.6 GHz and widens the datapath in the last level of logic to interface with the Rambus macro
 - The Rambus macro then has an 8:1 clock ratio to drive the data out at 3.2 Gb/s per differential pair
Memory Interface Controller Overview

- **Logical to Physical Memory Map**
 - Interleaves across channels
 - Interleaves across internal banks
 - Enables closed bank memory controller to maximize random access bandwidth

- **Programmable Command Reordering to maximize bandwidth utilization**
 - Command selection will tend to group commands into burst of 8 or 16 in a row before switching the bus
 - Bank conflicts, high priority reads, dependencies or lack of available commands can cause bus turnarounds

- **Memory Scrubbing to correct Single Bit Errors (optional)**
 - **Frequency**: Once every 20.6 msec
 - **Duration**: One read is performed. A write is performed if a single bit error is found and corrected.

- **Refresbes**
 - **Frequency**: Once every .49 usec
 - **Duration**: 1 command (4 Rambus Pclks)
Design to Support XDR Dram Controller

- **Power on Initialization & Calibration**
 - Timing Calibration, Receive/Transmit, Setup and Hold
 - Current Calibrations for drivers and receivers
 - Impedance Calibrations for drivers and receivers

- **Periodic Calibration**
 - Periodic Timing Calibration, Receive/Transmit, Setup and Hold
 - Frequency: Once every 8 msec
 - Duration: 64 Rambus Pclks (4 separate operations)
 - Current and Impedance Calibrations for drivers and receivers
 - Frequency: Once every 8 msec
 - Duration: 64 Rambus Pclks (4 separate operations)

- **Early Read**
 - Used to minimize Read to Write turnaround gap on the DRAM data busses

- **Write masking support for 16B to 128B writes**
 - Data dependant function
 - Requires Hardware calculation of ECC before storage into the Write data buffer
Summary

- **High Bandwidth Interconnect**
 - Dual XDR™ Memory Controller (25.6 GB/s @ 3.2 Gbps)
 - Two I/O interfaces (60 GB/s @ 5 Gbps)
 - Internal Element Interconnect (peak BW over 300 GB/s @ 3.2 GHz)
 - Resource Allocation Management

- **Flexible and Scalable**
 - Multiple System Configurations
 - Configurable I/O Interface Bandwidth
 - Coherent and Non-coherent protocols
 - Configurable Memory Capacity and Bandwidth
 - Internal Modular Interconnect Bus
 - Memory and I/O Interfaces Asynchronous to Processor Core